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THE	DIFFERENTIAL	FORMS	OF		
THE	FUNDAMENTAL	LAWS	
	

Coordinate	system	

	

There	are	two	common	coordinate	system:	

	

1. Cartesian	coordinate	
	

2. Polar	coordinate	
	

	 	



C23 CLASSROOM CHANNEL – Subscribe us 

CARTESIAN	COORDINATE	SYSTEM:	

A	Cartesian	coordinate	system	is	a	coordinate	system	that	specifies	each	point	uniquely	

in	a	plane	by	a	pair	of	numerical	coordinates,	which	are	the	signed	distances	to	the	point	

from	two	fixed	perpendicular	directed	lines,	measured	in	the	same	unit	of	 length.	Each	

reference	line	is	called	a	coordinate	axis	or	just	axis	(plural	axes)	of	the	system,	and	the	

point	where	they	meet	 is	 its	origin,	at	ordered	pair	(0,	0).	The	coordinates	can	also	be	

defined	as	the	positions	of	the	perpendicular	projections	of	the	point	onto	the	two	axes,	

expressed	as	signed	distances	from	the	origin.	

	
Example	of	Cartesian	coordinate	

	 	



C23 CLASSROOM CHANNEL – Subscribe us 

Motion	of	one	element	can	be	shown	as	below:	

	

	
	

N = velocity	at	x-axis	

R = velocity	at	y-axis	

S = resultant	velocity	

	

S = TN! + R!	
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POLAR	COORDINATE	SYSTEM:	

	

In	mathematics,	the	polar	coordinate	system	is	a	two-dimensional	coordinate	system	in	

which	each	point	on	a	plane	is	determined	by	a	distance	from	a	reference	point	and	an	

angle	from	a	reference	direction.	

	

The	reference	point	(analogous	to	the	origin	of	a	Cartesian	coordinate	system)	is	called	

the	pole,	and	the	ray	from	the	pole	in	the	reference	direction	is	the	polar	axis.	The	distance	

from	the	pole	is	called	the	radial	coordinate	or	radius,	and	the	angle	is	called	the	angular	

coordinate,	polar	angle,	or	azimuth.	
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N" = velocity	at	radial	direction	

N# = velocity	at	tangential	direction	

S = resultant	velocity	

	

S = T(N")! + (N#)!	
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THE	DIFFERENTIAL	FORMS	OF	THE	FUNDAMENTAL	LAWS	
	

	

The	 basic	 equations	 considered	 in	 this	 chapter	 are	 the	 three	 laws	 of	 conservation	 for	

physical	systems:	

	

1. Conservation	of	mass	(continuity)	
2. Conservation	of	momentum	(Newton’s	second	law)	
3. Conservation	of	energy	(first	law	of	thermodynamics)	
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CONSERVATION	OF	MASS	

THE	EQUATION	OF	CONTINUITY	

	

Mass	flow	rate	into	the	element	in	x-	and	y-direction	is	

shown	in	the	figure	below.		

	

	

	

	

	

	

	

	

	

	

	

	

Mass	flow	rate = _̇ = abc	

	 	

Syahrullail Samion
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The	net	flux	of	mass	entering	the	element	equal	to	the	rate	of	change	of	the	mass	of	the	

element.	

_̇in − _̇out =
e

ef
_element	

	

You	may	think	like	this:	

Let	say	we	have	system	of	incompressible	flow	like	this;	

	

	

	

	

	

	

_̇in = _̇out	
	

_̇in − _̇out =
e

ef
_element = 0	

	 	

INCOMPRESSIBLE 
SYSTEM !̇in !̇out 



C23 CLASSROOM CHANNEL – Subscribe us 

Let	say	we	have	system	of	incompressible	flow	like	this;	

	

	

	

	

	

	

	

	

	

	

	

_̇in ≠ _̇out	
	

_̇in =
e

ef
_element + _̇out	

	

_̇in − _̇out =
e

ef
_element	

	 	

INCOMPRESSIBLE 
SYSTEM !̇in !̇out 
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If	we	have	system	of	compressible	flow	like	this;	

	

	

	

	

	

	

_̇in ≠ _̇out	
	

_̇in =
e

ef
_element + _̇out	

	

_̇in − _̇out =
e

ef
_element	

	

	

	

	 	

COMPRESSIBLE 
SYSTEM !̇in !̇out 
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The	net	flux	of	mass	entering	the	element	equal	to	the	rate	of	change	of	the	mass	of	the	

element.	

_̇in − _̇out =
e

ef
_element	

	

Mass	flow	rate	=	density	×	velocity	×	cross	section	area		

	

!"#$#% + !'#(#% − *!" + +(!")+( #(.#$#% − *!' + +(!')+$ #$.#(#% = +
+0 (!#(#$#%)	

	
	
	
	
	
	 	

Syahrullail Samion

Syahrullail Samion
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Simplifying	the	above	expression:	

	

e(aN)

ek
+
e(aR)

el
+
ea

ef
= 0	

	

If	the	z-direction	is	exist,	it	will	become:	

	

e(aN)

ek
+
e(aR)

el
+
e(am)

en
+
ea

ef
= 0	

	

Then,	the	differential	continuity	equation	can	be	written	as:	

	
ea

ef
+ N

ea

ek
+ R

ea

el
+ m

ea

en
+ a o

eN

ek
+
eR

el
+
em

en
p = 0	

	

This	 is	 the	most	 general	 form	 of	 the	 differential	 continuity	 equation	 expressed	 using	

rectangular	coordinates.	

	

	 	

Syahrullail Samion
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For	the	case	of	incompressible	flow,	a	flow	in	which	density	of	a	fluid	particle	does	not	

change	as	it	travels	along,	the	continuity	equation	becomes:	

	
eN

ek
+
eR

el
+
em

en
= 0	

	

Assume	that	we	are	discussing	only	2-D	coordinate,	and	there	is	no	changes	in	density	

(incompressible),	we	might	express	the	continuity	equation	as	follows:	

	

	

!"
!# +

!%
!& = 0	
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EQUATION	OF	CONTINUITY	

	

Cartesian	coordinates:	

The	continuity	equation	
ea

ef
+ N

ea

ek
+ R

ea

el
+ m

ea

en
+ a o

eN

ek
+
eR

el
+
em

en
p = 0	

We	can	simplify	it	
ea

ef
+
e(aN)

ek
+
e(aR)

el
+
e(am)

en
= 0	

For	3D	incompressible	flow	
eN

ek
+
eR

el
+
em

en
= 0	

For	2D	incompressible	flow	
rN

rk
+
rR

rl
= 0	
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CONSERVATION	OF	MOMENTUM	

THE	NAVIER-STOKES	EQUATIONS	

	

The	Navier-Stokes	equation	is	widely	used	in	both	theory	and	in	application.	The	Navier-

Stokes	equation	represents	Newton’s	second	law	of	motion	as	applied	to	viscous	flow	of	a	

Newtonian	fluid.	In	this	notes,	we	assume	incompressible	flow	and	constant	viscosity.	

	

Similar	 to	 continuity	 equations,	 there	 are	 multiple	 ways	 to	 derive	 the	 Navier-Stokes	

equation.	This	note	shows	how	to	derive	the	equation	by	starting	with	a	fluid	particle	and	

applying	Newton’s	second	law.	Thus,	the	result	will	be	the	non-conservation	form	of	the	

equation.	Because	the	derive	is	complex,	we	omit	some	of	the	technical	details.	
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Step	1:	Select	a	fluid	particle	

Select	a	fluid	particle	in	a	flowing	fluid.	Imagine	that	the	particle	has	the	shape	of	a	cube.	

Assume	the	dimensions	are	infinitesimal	and	that	the	particle	is	at	the	position		(k, l, n)		

at	the	instant	shown.	
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Step	2:	Apply	Newton’s	second	law	

Regarding	 the	 forces,	 the	 two	 categories	 are	 body	 forces	 and	 surface	 forces.	 The	 only	

possible	surface	forces	are	the	pressure	force		uv,wand	the	shear	force		(v-).	Assume	that	
the	only	body	force	is	the	weight		(x).	

	

v	 = _y	

Sum	of	forces	on	a	particle	 =	(	mass	)	×	(	acceleration	)	

Body	force		+		Surface	force	 = _y = a∀y	

	 (∀	= volume)	

x + v. + v/	 = a∀
rR

rf
	

(x = _{ = a∀{)	 	

a∀{ + v. + v/	 = a∀
rR

rf
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Step	3:	Analyze	the	pressure	force	

To	begin,	consider	the	forces	on	the	x-faces	of	the	particle.	

	
	

The	net	force	due	to	pressure	on	the	x-faces	is:	
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v.	 = |b	

v,01	 = }|10∆1!
(b) − |13∆1!

(b)~ ∙ Ä	

	 = o|10∆1!
− |13∆1!

p ∙ ∆k ∙ ∆l ∙ Ä	
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Simplify	 above	 equation	by	 applying	 a	Taylor	 series	 expansion	 (twice)	 and	neglecting	

higher	order	term	to	give:	

	

v.01 =
e|

ek
(∆k∆l∆n)Ä	

	

Repeat	this	process	for	the	y-faces	and	z-faces,	and	combine	results	to	give:	

	

v.0455 = −o
e|

ek
(∆k∆l∆n)Ä +

e|

el
(∆k∆l∆n)Ç +

e|

en
(∆k∆l∆n)Ép	
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Simplify	it	and	then	introduce	vector	notation	to	give:	

	

v. = −o
e|

ek
Ä +

e|

el
Ç +

e|

en
Ép (∆k∆l∆n) = −∇|(∆k∆l∆n)	

	

It	reveals	a	physical	interpretation	of	the	gradient:	

	

Gradient	of	the	pressure	

field	at	a	point	
=
Net	pressure	force	on	a	fluid	particle

Volume	of	the	particle
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Step	4:	Analyze	the	shear	force	

The	shear	force	is	the	net	force	on	the	fluid	particle	due	to	shear	stresses.	Shear	stress	is	

caused	 by	 viscous	 effects	 and	 is	 represented	mathematically	 as	 in	 Figure	 below.	 This	

figure	 shows	 that	 each	 face	 of	 the	 fluid	 particle	 has	 three	 (3)	 stress	 components.	 For	

example,	the	positive	x-faces	has	three	stress	components,	which	are		á11		,		á16		and		á17	.	
The	double	subscript	notation	describes	the	direction	of	 the	stress	component	and	the	

face	on	which	the	component	acts.	

	

For	example:	

o á11		is	the	shear	stress	on	the	x-faces	in	the	k-direction	
o á16		is	the	shear	stress	on	the	x-faces	in	the	l-direction	
o á17		is	the	shear	stress	on	the	x-faces	in	the	n-direction	
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Shear	stress	is	a	type	of	mathematical	entity	called	

a	second	order	tensor.	A	tensor	is	analogous	to	but	

more	general	than	a	vector.		

	

Example:	A	zeroth	order	tensor	is	a	scalar,	a	first	

order	tensor	is	a	vector.	A	second	order	tensor	has	

magnitude,	 direction	 and	 orientation	 (where	

orientation	 describes	 which	 face	 the	 stress	 acts	

on)	
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To	find	the	net	shear	force	on	the	particle,	each	stress	component	is	be	multiplied	by	area,	

and	the	forces	are	added.	Then,	a	Taylor	series	expansion	is	applied	and	the	result	is	that:	

	

v/894" = v/ = à

v1,-894"
v6,-894"
v7,-894"

â =

⎣

⎢
⎢
⎢
⎢
⎢

⎡ç
eá11
ek

+
eá16
ek

+
eá17
ek

é

ç
eá61
el

+
eá66
el

+
eá67
el

é

ç
eá71
en

+
eá76
en

+
eá77
en

é
⎦

⎥
⎥
⎥
⎥
⎥

⎤

(∆k∆l∆n)	
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This	can	be	written	in	invariant	notation	as:	

	

v/894" = v/ = (∇ ∙ á)∀= udiv(á)w∀	

	

	

where	the	terms	on	the	right	side	represent	the	divergence	of	the	stress	tensor	times	the	

volume	of	the	fluid	particle.	
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It	reveals	the	physics	of	the	divergence	when	it	operates	on	the	stress	tensor.	Note	that	

this	 is	 the	 third	physical	 interpretation	of	 the	divergence	operator.	This	 is	because	 the	

physics	of	a	mathematical	operator	depend	on	the	context	in	which	the	operator	is	used.	

	

Divergence	of	the	

stress	tensor	
=
Net	shear	force	on	a	fluid	particle

Volume	of	the	particle
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Step	5:	Combine	terms	

Substitute	the	shear	force	and	pressure	force	into	Newton’s	second	law	of	motion.	Then,	

divide	by	the	volume	of	the	fluid	particle	to	give:	

	

_y	 = v	

a(∀)
rR

rf
	 =	a∀{ + v. + v/	

	 = a∀{ − ∇|(∆k∆l∆n) + (∇ ∙ á)∀	

	 = a{(∀) − ∇|(∀) + (∇ ∙ á)(∀)	

	 Divide	with	volume,		(∀)	

a
rR

rf
	 = a{ − ∇| + ∇á	

	

This	 is	the	differential	 form	of	the	linear	momentum	equation	without	any	assumption	

about	 the	nature	of	 the	 fluid.	The	next	 step	 involves	modifying	 this	equation	 to	 that	 it	

applies	to	a	Newtonian	fluid.	
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Step	6:	Assume	a	Newtonian	fluid	

Stokes	in	1845	figured	out	a	way	to	write	the	stress	tensor	in	terms	of	the	rate-of-strain	

tensor	 of	 the	 flowing	 fluid.	 The	 details	 are	 omitted	 here.	 After	 Stokes’	 results	 are	

introduced,	assume	constant	density	and	viscosity,	above	equation	becomes:	

	

a
rR

rf
= a{ − ∇| + ∇á	

	

Above	equation	can	be	specifically	written	as:	

	

k − _ï_ñófN_	 ! 2+"+0 + "
+"
+( + '

+"
+$ + 3

+"
+%4	 = !5! −

∂7
+( +

∂8!!
+( + ∂8"!+$ + ∂8#!+% 	

l − _ï_ñófN_	 ! 2+'+0 + "
+'
+( + '

+'
+$ + 3

+'
+%4	 = !5" −

∂7
+$ +

∂8!"
+( + ∂8""+$ + ∂8#"+% 	

n − _ï_ñófN_	 ! 2+3+0 + "
+3
+( + '

+3
+$ + 3

+3
+%4	 = !5# −

∂7
+% +

∂8!#
+( + ∂8"#+$ + ∂8##+% 	
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It	 may	 be	 noted	 that	 the	 last	 three	 convective	 terms	 on	 the	 RHS	 of	 above	 mention	

equations	make	it	highly	non-linear	and	complicates	the	general	analysis.	A	simplification	

is	possible	for	considering	an	incompressible	flow	of	Newtonian	fluid	where	the	viscous	

stresses	are	proportional	to	the	element	strain	rate	and	coefficient	of	viscosity		(ò)	.	For	

an	incompressible	flow,	the	shear	terms	may	be	written:	

	

8!! = 2: +"+(	 8!" = 8"! = : 2+"+$ +
+(
+(4	

8"" = 2: +'+$	 8!# = 8#! = : 2+3+( +
+"
+%4	

8## = 2: +3+% 	 8"# = 8#" = : 2+'+% +
+3
+$4	
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Thus,	the	differential	momentum	equation	for	Newtonian	fluid	with	constant	density	

and	viscosity	is	given	by:	

	

k − _ï_ñófN_	 !;";0 	 = !5! −
∂7
+( + : *

∂$"
+($ +

∂$"
+$$ +

∂$"
+%$.	

l − _ï_ñófN_	 !;';0 	 = !5" −
∂7
+$ + : *

∂$'
+($ +

∂$'
+$$ +

∂$'
+%$.	

n − _ï_ñófN_	 !;3;0 	 = !5# −
∂7
+% + : *

∂$3
+($ +

∂$3
+$$ +

∂$3
+%$.	
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It	is	a	second	order,	non-linear	partial	differential	equation	and	is	known	as	Navier-Stokes	

equation.	In	vector	form,	it	may	be	represented	as:	

	

a
ôc

ôf
= a{ − ∇| + µ∇!c	

	

where		∇!c		is	a	mathematical	operator	that	is	called	the	Laplacian	of	the	velocity	field.	
	

As	a	conclusion,	this	is	the	Navier-Stokes	equation.	

	

a
ôc

ôf
= a{ − ∇| + µ∇!c	
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Step	7	:	Interpret	the	physics	

The	physics	of	the	Navier-Stokes	equation	are:	

	

a
ôc

ôf
	 =	 a{	 −	 ∇|	 +	 µ∇!c	

Mass	of	the	particle	
times	acceleration	of	
the	particle	divided	by	
the	volume	of	the	

particle.	

	 Weight	of	the	
particle	divided	by	

its	volume.	

	 Net	pressure	force	
on	the	particle	
divided	by	its	
volume.	

	 Net	shear	force	on	
the	particle	divided	
by	its	volume.	

	

Note	the	dimensions	and	units:	

	

Dimension =
Force

Volume
=
ú

_; =
É{

_! ∙ ù!
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Navier-Stokes	equation	(constant	properties)	for	Cartesian	coordinates	is:	

	

a o
eN

ef
+ N

eN

ek
+ R

eN

el
+ m

eN

en
p = a{1 −

e|

ek
+ ò ç

e!N
ek!

+
e!N
el!

+
e!N
en!

é	

a o
eR

ef
+ N

eR

ek
+ R

eR

el
+ m

eR

en
p = a{6 −

e|

el
+ ò ç

e!R
ek!

+
e!R
el!

+
e!R
en!

é	

a o
em

ef
+ N

em

ek
+ R

em

el
+ m

em

en
p = a{7 −

e|

en
+ ò ç

e!m
ek!

+
e!m
el!

+
e!m
en!

é	
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EQUATION	OF	CONTINUITY	
	
Cartesian	coordinates:	
	

0 =
GH

GI
+
G(HL)

GN
+
G(HO)

GP
+
G(HQ)

GR
	

	
Polar	coordinates:	
	

0 =
GH

GI
+
1

U

G

GU
(HL!U) +

G

GR
(HL") +

1

U

G

GV
(HL#)	
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Navier-Stokes	equation	(constant	properties)	for	Cartesian	coordinates	is:	
	

[

[I
=
G

GI
+ L

G

GN
+ O

G

GP
+ Q

G

GR
	

∇$=
G$

GN$
+
G$

GP$
+
G$

GR$
	

	

H ]
GL

GI
+ L

GL

GN
+ O

GL

GP
+ Q

GL

GR
^	 = H_% −

Ga

GN
+ b c

G$L
GN$

+
G$L
GP$

+
G$L
GR$

d	

GL

GI
+ L

GL

GN
+ O

GL

GP
+ Q

GL

GR
	 = _% −

1

H

Ga

GN
+
b

H
c
G$L
GN$

+
G$L
GP$

+
G$L
GR$

d	

[L

[I
	 = _% −

1

H

Ga

GN
+ e(∇$)L	
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H ]
GO

GI
+ L

GO

GN
+ O

GO

GP
+ Q

GO

GR
^	 = H_& −

Ga

GP
+ b c

G$O
GN$

+
G$O
GP$

+
G$O
GR$

d	

GO

GI
+ L

GO

GN
+ O

GO

GP
+ Q

GO

GR
	 = _& −

1

H

Ga

GP
+
b

H
c
G$O
GN$

+
G$O
GP$

+
G$O
GR$

d	

[L

[I
	 = _& −

1

H

Ga

GP
+ e(∇$)O	

	

H ]
GQ

GI
+ L

GQ

GN
+ O

GQ

GP
+ Q

GQ

GR
^	 = H_" −

Ga

GR
+ b c

G$Q
GN$

+
G$Q
GP$

+
G$Q
GR$

d	

GQ

GI
+ L

GQ

GN
+ O

GQ

GP
+ Q

GQ

GR
	 = _" −

1

H

Ga

GR
+
b

H
c
G$Q
GN$

+
G$Q
GP$

+
G$Q
GR$

d	

[Q

[I
	 = _" −

1

H

Ga

GR
+ e(∇$)Q	
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CONSERVATION	OF	ENERGY	

Recall	the	integral	relation	of	energy	equation	for	a	fixed	control	volume:	

	

†̇ − ẋ/ − ẋ< =
e°

ef
=
e

ef
ç¢ ñar∀

=<
é + ¢ oñ +

|

a
p a(c ∙ ó)

=/
rb	 (1)	

	

†̇	 =	Rate	of	heat	energy	added	to	the	control	volume	 	

ẋ/	 =	Time	derivative	of	shaft	work	in	the	control	volume	 	

ẋ< 	 =	Time	derivative	of	work	done	by	viscous	stress	in	the	control	volume	 	

e°

ef
	 =	Rate	of	change	of	energy	in	the	system	 	

£c	 =	Control	volume	 	

£§	 =	Control	surface	 	
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Figure	1	

	

If	the	control	volume	happens	to	be	an	elemental	system	as	shown	in	Figure	1,	then	

there	will	be	no	shaft	work	term		uẋ/ = 0w	.		

Denoting	the	energy	per	unit	volume	as:	

ñ = N• +
1

2
c! + {n	
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The	net	energy	flow	across	the	six	control	surface	can	be	calculated	as	below:	

	

Face	 Inlet	energy	flow	 Outlet	energy	flow	

k	 aN oñ +
|

a
p rlrn	 ¶aN oñ +

|

a
p +

e

ek
(aN) oñ +

|

a
p rkß rlrn	

l	 aR oñ +
|

a
p rkrn	 ¶aR oñ +

|

a
p +

e

el
(aR) oñ +

|

a
p rlß rkrn	

n	 am oñ +
|

a
p rkrl	 ¶am oñ +

|

a
p +

e

em
(am) oñ +

|

a
p rnß rkrl	

	

Hence,	Eq.(1)	can	be	written	as:	

	

ȯ − q̇' = k
G

GI
H ]r +

a

H
^ +

G

GN
(HL) ]r +

a

H
^ +

G

GP
(HO) ]r +

a

H
^ +

G

GR
(HQ) ]r +

a

H
^l sNsPsR	 (2)	
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With	the	help	of	continuity	equation	and	similar	analogy	considered	during	the	

derivation	of	momentum	equation,	Eq.(2)	can	be	simplified	as:	

	

†̇ − ẋ< = ¶a
rñ

rf
+ c ∙ (∇|)ß rkrlrn	 (3)	

	

If	one	considers	the	energy	transfer	as	heat		u†̇w		through	pure	conduction,	the	Fourier’s	

law	of	heat	conduction	can	be	applied	to	the	elemental	system.	

	

S = −É∇®	 (4)	

	

Where		É		is	the	thermal	conductivity	of	the	fluid.		
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The	heat	flow	passing	through	x-face	is	shown	in	Figure	2,	and	for	all	the	six	faces,	it	is	

summarized	in	the	following	table:	

Face	 Inlet	energy	flow	 Outlet	energy	flow	

k	 S1rlrn	 ¶S1 +
e

ek
(S1)rkß rlrn	

l	 S6rkrn	 ¶S6 +
e

el
uS6wrkß rkrn	

n	 S7rkrl	 ¶S7 +
e

en
(S7)rkß rkrl	
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The	net	heat	flux	can	be	obtained	by	the	difference	in	inlet	and	outlet	heat	fluxes.	

	

†̇	 = − ¶
e

ek
(S1) +

e

el
uS6w +

e

en
(S7)ß rkrlrn	 	

	 = −(∇ ∙ S)rkrlrn	 	

	 = ∇ ∙ (É∇®)	rkrlrn	 (5)	

	

The	rate	of	work	done	by	the	viscous	stresses	on	the	left	x-faces	as	shown	in	the	Figure	2	

is	given	by:	

	

ẋ< 	 = −m1rlrn	 	

	 = −uNá11 + Rá16 + má17wrlrn	 (6)	
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In	the	similar	manner,	the	net	viscous	rates	are	obtained	and	is	given	by:	

	

7̇%	 = − 9 ##: ;5<&& + $<'' + =<##> +
#
#? ;5<'& + $<'' + =<'#> +

#
#) ;5<#& + $<#' + =<##>@ A:A?A)	 	

	 = −∇uc ∙ á>?wrkrlrn	 (7)	

	

Then,	substitute	Eq.(5)	and	Eq.(7)	into	Eq.(3),	

	

	 a
rñ

rf
+ c ∙ ∇| = ∇ ∙ (É∇®) + ∇ ∙ uc ∙ á>?w	 (8)	

	

The	second	term	in	the	RHS	of	Eq.(8)	can	be	written	in	the	following	term,	

	

	 ∇ ∙ uc ∙ á>?w = c ∙ u∇ ∙ á>?w + Φ	 (9)	
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Here,	 	Φ		 is	 known	 as	 the	 viscous-dissipation	 function.	 For	Newtonian	 incompressible	

viscous	fluid,	this	function	as	the	following	form.	

	

Φ	 = µ m2 ]
GL

GN
^

$
+ 2]

GO

GP
^

$
+ 2]

GQ

GR
^

$
+ ]

GO

GN
+
GL

GP
^

$
+ ]

GQ

GP
+
GO

GR
^

$
+ ]

GL

GR
+
GQ

GN
^

$
n	 (10)	

	

Since	all	the	terms	in	Eq.(10)	are	quadratic,	so	the	viscous	dissipation	terms	are	always	

positive,	the	the	flow	always	tends	to	lose	its	available	energy	due	to	dissipation.	

	

When	Eq.(9)	is	used	in	Eq.(8),	simplified	using	linear-momentum	equation	and	the	terms	

are	 rearranged,	 then	 the	 general	 form	 of	 energy	 equation	 is	 obtained	 for	 Newtonian	

viscous	fluid.	

	

ρ
rN

rf
+ |(∇ ∙ c)	 = ∇ ∙ (É∇®) + Φ	 (11)	
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For	analysis	point	of	view,	the	following	valid	approximations	can	be	made	for	Eq.(11)	

	

rN ≈ ≠<r®	
	

≠@	, ò	, É	and	a	are	constant	
	

ρ≠@
r®

rf
	 = É∇!® + Φ	 (13)	

	

Where,	
r®

rf
=
e®

ef
+ N

e®

ek
+ R

e®

el
+ m

e®

en
 

 
The	specific	heats	of	gases	are	given	as	 	≠, 		 and	 	≠@ 		 at	 constant	pressure	and	constant	
volume	respectively	while	solids	and	liquids	are	having	only	single	value	for	specific	heat.	

 
 


