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• Two primary methods in deriving the differential forms of fundamental 
laws:

• Gauss’s Theorem: Allows area integrals of the equations (of the previous 
chapter) to be transformed to volume integrals (and then set to zero).

• Valid over any arbitrary control volume.
• (Used in this book) Identify an infinitesimal element in space and apply the 

basic laws to those elements.
• Easier math/computation.

• Conservation of mass (to an infinitesimal element) à Differential continuity equation 
(density and velocity fields)

• Newton’s Second law à Navier-Stokes equations (velocity, pressure, and density 
field relationship)

• First Law of thermodynamics à Differential energy equation (temperature field to 
velocity, density, and pressure fields)

5.1 Introduction
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• Most problems are assumed to be isothermal, incompressible flows in 
which the temperature field doesn’t play a role.

• Initial Conditions: Conditions (independent variable) that depend on time.
• Boundary Conditions: Conditions (independent variable) that depend on a 

spatial coordinate.
• No-slip conditions for a viscous flow. Velocity of the fluid at the wall equals 

the velocity at the wall (usually stationary).
• Normal component of velocity in an inviscid flow (negligible viscous effects).
• Pressure in a flow with a free-surface.
• Temperature of the boundary (temperature gradient at the boundary). For a 

constant boundary temperature, the temperature of the fluid next to the 
boundary equals the boundary temperature.

5.1 Introduction
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5.2 Differential Continuity Equation

• Net mass flux entering the element equals the rate of 
change of the mass of the element.

• For a 2-dimensional flow (xy plane), using the diagram:
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5.2 Differential Continuity Equation

• After rearranging the equation on the previous slide, a 
general form of the differential continuity equation 
is obtained.

• Rectangular coordinates.

• A gradient operator (del, 𝛻) is introduced as:
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5.2 Differential Continuity Equation

• A different form of the continuity equation is:

• 𝑉 = 𝑢%̂ + 𝑣)̂ + 𝑤𝒌,
• This dot-product 𝛻 - 𝑉 is called the velocity 

divergence. 
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5.2 Differential Continuity Equation

Incompressible Flow

• Does not demand that ρ is constant.
• Instead, the density of the fluid particle does not 

change as it travels along, i.e.,

• Slightly different from assumption of constant 
density:

• Which means that each term in the above 
equation has to be zero. 
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5.2 Differential Continuity Equation

Incompressible Flow

• Incompressible flows with density gradients are 
also referred to as stratified flows or 
nonhomogeneous flows.

• The continuity equation for this flow is either:

• The divergence of the velocity vector is zero for an 
incompressible flow (even if the flow is unsteady).
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5.2 Differential Continuity Equation
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5.2 Differential Continuity Equation
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5.2 Differential Continuity Equation
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5.2 Differential Continuity Equation
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5.3 Differential Momentum Equation
5.3.1 General Formulation

• There are nine stress components of a 
stress tensor τij.

• The stress components act in the positive 
direction on a positive face (normal vector 
points in the positive coordinate direction) 
and in the negative direction on a negative 
face (normal vector points in the negative 
coordinate direction).
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5.3 Differential Momentum Equation
5.3.1 General Formulation

• First subscript on a stress component: 
Face upon which the component acts.

• Second subscript: Direction in which it 
acts.

• E.g. τxy acts in the positive y-direction on 
a positive x-face and in the negative y-
direction on a negative x-face.

• Stress Tensor:

• Normal Stress: Stress component that acts 
perpendicular to a face (σxx, σyy, σzz).

• Shear Stress: Stress component that acts 
tangential to a face (τxy, τyx, τxz, τzx, τyz, τzy).
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5.3 Differential Momentum Equation
5.3.1 General Formulation

• This stress tensor is symmetric.
• τxy = τyx

• τxz = τzx

• τyz = τzy

• Stress Tensor:

• Normal Stress: Stress component that acts 
perpendicular to a face (σxx, σyy, σzz).

• Shear Stress: Stress component that acts 
tangential to a face (τxy, τyx, τxz, τzx, τyz, τzy).
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5.3 Differential Momentum Equation
5.3.1 General Formulation

• Applying Newton’s second law:
• Assuming no shear stress in the z-direction.
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5.3 Differential Momentum Equation
5.3.1 General Formulation

• Applying Newton’s second law:
• Assuming no shear stress in the z-direction.

simplifies to:

z-direction components are 
included:

Assume gravity ρgdxdydz is 
in the negative z-direction
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5.3 Differential Momentum Equation
5.3.2 Euler’s Equations

• The stress tensor serves as a good approximation for flows away from boundaries, 
or in regions of sudden change.

• Assume shear stress components (from viscous effects) are negligible.
• Normal stress components are equal to the negative of the pressure.
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5.3 Differential Momentum Equation
5.3.2 Euler’s Equations

• For a frictionless flow, the stress components lead to:

• The scalar equation can be written as a general vector equation as:

• Hence Euler’s Equation
Three differential equations formed 
from applying Newton’s second law 
and neglecting viscous effects.
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5.3 Differential Momentum Equation
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5.3 Differential Momentum Equation
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5.3 Differential Momentum Equation
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5.3 Differential Momentum Equation
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5.3 Differential Momentum Equation
5.3.3 Navier-Stokes Equations

• Most fluids are Newtonian fluids.
• Have a linear relationship between stress components and velocity gradients.
• E.g., Water, oil, and air

• If a fluid is Newtonian (linearity), and isotropic
• Fluid properties are independent of direction at a given position.
• Hence stress components and velocity gradients can be related using two fluid 

properties:
• Viscosity µ
• Second coefficient of viscosity λ
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5.3 Differential Momentum Equation
5.3.3 Navier-Stokes Equations

• The stress-velocity gradient relations/constitutive equations:
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5.3 Differential Momentum Equation
5.3.3 Navier-Stokes Equations

Stokes’s Hypothesis
• Relationship between viscosity and the second coefficient of viscosity (for 

most gases and monatomic gases).

• From this, it can be said that the negative average of the three normal 
stresses is equal to the pressure, i.e.,
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5.3 Differential Momentum Equation
5.3.3 Navier-Stokes Equations

• Hence for a homogeneous fluid in an incompressible flow:
• Using the continuity equations Homogeneous fluid: A fluid 

whose properties are 
independent of position.

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a 
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5.3 Differential Momentum Equation
5.3.3 Navier-Stokes Equations

• The Navier-Stokes equations can be placed in vector form as:

• The combined vector equation for the Navier-Stokes is:

• With the Laplacian: 
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5.3 Differential Momentum Equation
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5.3 Differential Momentum Equation
5.3.4 Vorticity Equations

• Derived from taking the curl of the Navier-Stokes equations.
• Do not contain pressure or gravity terms in Navier-Stokes equations, only 

velocity.

• Using this, the vorticity equation can be derived to be:

𝛻	X	𝑉 is the curl of the velocity (cross-
product of the del operator and a vector 
function.)

• Assuming µ and ρ are constants.
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5.3 Differential Momentum Equation
5.3.4 Vorticity Equations

• The vector form of the vorticity equation (above) can be rewritten as three 
scalar equations: 
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5.3 Differential Momentum Equation
5.3.4 Vorticity Equations (Definitions)

• Vortex Line: A line to which the vorticity vector is tangent.
• Vortex Tube: (Vortex) A tube whose walls contain vortex lines.  

• The vorticity equations show that if an inviscid flow is everywhere irrotational 
(ω = 0):

• It must remain irrotational since 01
02
= 0 [Persistence of irrotationality]

• If a uniform flow approaches an object, vorticity is created because of 
viscosity.
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5.3 Differential Momentum Equation
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5.3 Differential Momentum Equation
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• For an infinitesimal fluid element, 
the heat transfer rate is:

5.4 Differential Energy Equation

• Fourier’s law of heat transfer, 
n: Direction normal to the area
T: Temperature
K: Thermal conductivity
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• The simplified energy equation is:

5.4 Differential Energy Equation

• In terms of enthalpy [ 𝑢4 = ℎ − 7
8

]
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• For a liquid flow with 𝛻 · 𝑉 = 0 and 𝑢4 = 𝑐7𝑇 (cp is specific heat), the above 
simplifies to: 

5.4 Differential Energy Equation

α is thermal diffusivity  

• For an incompressible gas flow (and the ideal-gas assumption):
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5.4 Differential Energy Equation
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5.4 Differential Energy Equation
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5.4 Differential Energy Equation
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5.5 Summary

• The vector form equations for incompressible flows are:

Vorticity:
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5.5 Summary (Definitions)

• Newtonian Fluid – One with a linear relationship between stress 
components and velocity gradients.

• Isotropic Fluid – One where the fluid properties are independent of direction.

• Homogeneous Fluid – One where fluid properties do not depend on 
position.

• Incompressible Flow – One where the density of a particle is constant (08
02
=

0)

• The vector form equations of the previous slide assumes all of the above, in 
addition to an inertial reference frame. 
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5.5 Summary (Fundamental Laws - Continuity)
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5.5 Summary (Fundamental Laws - Momentum)
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5.5 Summary (Fundamental Laws - Energy)
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5.5 Summary (Fundamental Laws - Stresses)


