Chapter 5

The Differential
Forms of the
Fundamental

Laws



5.1 Introduction

Two primary methods in deriving the differential forms of fundamental
laws:
Gauss’s Theorem: Allows area integrals of the equations (of the previous
chapter) to be transformed to volume integrals (and then set to zero).
Valid over any arbitrary control volume.

(Used in this book) Identify an infinitesimal element in space and apply the
basic laws to those elements.

Easier math/computation.

Conservation of mass (to an infinitesimal element) - Differential continuity equation
(density and velocity fields)

Newton’s Second law - Navier-Stokes equations (velocity, pressure, and density
field relationship)

First Law of thermodynamics - Differential energy equation (temperature field to
velocity, density, and pressure fields)



5.1 Introduction

Most problems are assumed to be isothermal, incompressible flows in
which the temperature field doesn’t play a role.

Initial Conditions: Conditions (independent variable) that depend on time.

Boundary Conditions: Conditions (independent variable) that depend on a
spatial coordinate.

No-slip conditions for a viscous flow. Velocity of the fluid at the wall equals
the velocity at the wall (usually stationary).

Normal component of velocity in an inviscid flow (negligible viscous effects).
Pressure in a flow with a free-surface.

Temperature of the boundary (temperature gradient at the boundary). For a
constant boundary temperature, the temperature of the fluid next to the
boundary equals the boundary temperature.



5.2 Differential Continuity Equation
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Figure 5.1 An infinitesimal control volume using rectangular coordinates.

«  For a 2-dimensional flow (xy plane), using the diagram:

pudydz + pvdxdz — ( pu + a(; “) dx)dydz — ( pv + H(f 0) dy]dxd: - %( pdxdydz)
| x ay



5.2 Differential Continuity Equation
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| 3w After rearranging the equation on the previous slide, a
pudyd; |? (pus+——dodydz  general form of the differential continuity equation
B || is obtained.
} Rectangular coordinates.
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Figure 5.1 An infinitesimal control volume using rectangular coordinates.

A gradient operator (del, V) is introduced as:v = 9+ 2 i+ 2k
0x ay 0z



5.2 Differential Continuity Equation
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Figure 5.1 An infinitesimal control volume using rectangular coordinates.

A different form of the continuity equation is:

D
L i pv.v=0
Dt

V=ui+vj+wk
This dot-product V - IV is called the velocity
divergence.



5.2 Differential Continuity Equation
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Figure 5.1 An infinitesimal control volume using rectangular coordinates.

Incompressible Flow

Does not demand that p is constant.

Instead, the density of the fluid particle does not
change as it travels along, i.e.,

Dp oap ua_p+ ap ap

—_— = — v— +tw— =10

Dt ot dx ay 9z
Slightly different from assumption of constant
density:

Which means that each term in the above
equation has to be zero.



5.2 Differential Continuity Equation
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Figure 5.1 An infinitesimal control volume using rectangular coordinates.

Incompressible Flow

Incompressible flows with density gradients are
also referred to as stratified flows or
nonhomogeneous flows.

The continuity equation for this flow is either:

The divergence of the velocity vectoris zero for an
incompressible flow (even if the flow is unsteady).



5.2 Differential Continuity Equation

The x-component velocity is given by u(x,y) = Ay* in an incompressible plane flow.
Determine v(x, y) if 2(x, 0) = 0, as would be the case in flow between parallel plates.

Solution
The differential continuity equation for an incompressible, plane flow is

since in a plane flow the two velocity components depend only on x and y. Using the
given u(x, y) we find that

au do dv
— T — — — = 0
ox ay ( 4y )+ v oy

Since this is a partial differential equation, its solution is
v(x, ) =f(x)
But v(x, 0) = 0 requiring that f(x) = 0. Consequently,
v(x,y)=0

is the y-component velocity demanded by the conservation of mass. In order for v(x, y) to
be nonzero, u(x, y) would have to vary with x or o(x, 0) would have to be nonzero.



5.2 Differential Continuity Equation

Air flows in a pipe and the velocity at three neighboring points 4, B, and C, 10 cm apart, is
measured to be 83, 86, and 88 m/s, respectively, as shown in Figure ES.2. The temperature
and pressure are 10°C and 345 kPa, respectively, at point B. Approximate dp/dx at that
point, assuming steady, uniform flow.

83 m/s 86 m/s 88 m/s
e > >
A B C
X
Figure E5.2
Solution 2 P P
The continuity equation (5.2.5) for this steady (— = ), uniform (— = — = 0) flow
reduces to ot ay oz
ud—p + pﬂ =0
dx dx

We used ordinary derivatives since # and p depend only on x. The velocity derivative is
approximated by

where the more accurate central difference has been used.® The density is

- L _ 345
RT 0.287 X (10 + 273)

where absolute pressure and temperature are used. The density derivative is then approx-

p = 4.25 kg/m®

imated to be
dp _  pdu
dx u dx
_ 4.25 kg/m?

_ -1 _ _ 4
=~ X253 1.23 kg/m



5.2 Differential Continuity Equation

The x-component of velocity at points 4, B, C, and D, which are 10 mm apart, is mea-
sured to be 5.76, 6.72, 7.61, and 8.47 m/s, respectively, in the plane steady, symmetrical,
incompressible flow shown in Figure E5.3 in which w = 0. Approximate the x-component
acceleration at C and the y-component of velocity 6 mm above B.

/

Oy Gy G — —-—-— x

Figure E5.3

Solution
The desired acceleration component on the centerline is found from Eq. 3.2.9 to be

0 0 0
a, =2Z4+ u-a—u /d_u =r u/)i
t ax ay az

Au 8.47-6.72

=y— =76]——————— = 2
qu 7.61 0.02 666 m/s

where we have assumed a symmetrical flow so that v along the centerline is zero. We have
used central differences to approximate gu/dx at point C, as done in Example 5.2 (see

footnote 3).
The y-component of velocity 6 mm above B is found using the continuity equation

(5.2.10) as follows:

bo _ 02 (with w =0)

ay ax

Av _ Au _ 7.61-576 _ 95
Ay Ax 0.02

SoAv =—92.5 Ay = —92.5 X 0.006 = —0.555 m/s
We know that » = 0 at B; hence at the desired location, with Av = v — v, there results

v = =0.555 m/s



5.2 Differential Continuity Equation

The continuity equation can be used to change the form of an expression. Write the
expression pDit/Dt + p V + V, which appears in the differential energy equation, in terms
of enthalpy / rather than internal energy . Recall that h = @t + p/p (see Eq. 1.7.11).

Solution
Using the definition of enthalpy, we can write

where we used

The desired expression is then

Dii Dh Dp pDp
— 4+ pV.V=p— L L LZF py.y
P TP Pot " Dr et T

The continuity equation (5.2.8) is introduced resulting in

i }
JDi g.yo,Dh_Dp pDp ( 1Dp
Dt Dt Dt P Dt P Dt
Dh D
oDk _ Dp
Dt Dt

and enthalpy has been introduced.



5.3 Differential Momentum Equation

5.3.1 General Formulation

A G.:.:
A Oy
r\l
Ty y
G‘l (T((
- > X
Tn.
— c
r\’( /
v G'r‘v l
(a) (b)
Figure 5.2 Stress components in rectangular coordinates: (a) two-dimensional stress

components; (b) three-dimensional stress components.

There are nine stress components of a
stress tensor T1;;.

The stress components act in the positive
direction on a positive face (normal vector
points in the positive coordinate direction)

and in the negative direction on a negative
face (normal vector points in the negative

coordinate direction).



5.3 Differential Momentum Equation

5.3.1 General Formulation
) Stress Tensor:

|
O To T

Oz xx x) xz

Toy Tyx

fi >

T, {o— X 'z

¥x o V4 ) O J /
Ty Tx %—> y - - 0

Oxx Ox Izx Izy zz

™ 1 e First subscript on a stress component:
' Face upon which the component acts.

Second subscript: Direction in which it
acts.

Normal Stress: Stress component that acts

perpendicular to a face (0,y, Oy, 0,;). _ B o
Shear Stress: Stress component that acts E.g. Ty &Cts in the positive y-dlrec_;tlon on
a positive x-face and in the negative y-

tangential 1o a face (Tey, Ty, Txz: Taxa Tyzr Tay)- direction on a negative x-face.



5.3 Differential Momentum Equation

5.3.1 General Formulation

y |

ACz

@Z

4 >
Ty

Fyx T K Oy
Txy = L y
O "—61‘1 . -

Ty ]

(b)

Normal Stress: Stress component that acts
perpendicular to a face (0,y, Oy, 0,;).

Shear Stress: Stress component that acts
tangential to a face (Tyy, Ty Tuzs Toxr Tyzs Tay)-

Stress Tensor:
0-.1'.1' T.\‘y Tx
7-ij = Tl X O-y) T_v:
T T o..

This stress tensor is symmetric.

Txy = Tyx

TXZ = TZX

Tyz= Ty



5.3 Differential Momentum Equation

5.3.1 General Formulation
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Figure 5.2 Stress components in rectangular coordinates: (a) two-dimensional stress Figure 5.3 Rectangular stress components on a fluid element.

components; (b) three-dimensional stress components.

- Applying Newton’s second law:
Assuming no shear stress in the z-direction.



5.3 Differential Momentum Equation

5.3.1 General Formulation

- Applying Newton’s second law:
Assuming no shear stress in the z-direction.

o, Ty
(0}.‘- + (?-“ 4")‘1}'(12 — o, dydz + (Tx‘, + gdy)dxdz — 7,,dxdz = pdxdyd: Du
: 0x o ay ' Dt
ao,, ' or,. ,
(aw + o ddexdz —0,,dxdz + (T,._‘. + Adx)dyd: — 7,.dvdz = pdxdyd-= Do
ST gy . : ax : Di
o, 0Ty Du
simplifies to: ox 9y D
dao,, oT,, Do
JJ + | f— —
ay ax Dt
dtf " rh' 4 97e _ . Du
0x ay 0z Dt
z-direction components are 9y , My , 9Ty _ p_Dv
included: ay 0x 0z Dt
80':: + aT:x + aT:_V _ D w
dz dx dy pe=p Dt

qtt ‘!)"I:
dy
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Figure 5.3 Rectangular stress components on a fluid element.

Assume gravity pgdxdydz is
in the negative z-direction



5.3 Differential Momentum Equation

5.3.2 Euler’s Equations -p 0 0
Ty = 0O —p O
0 0 —p

The stress tensor serves as a good approximation for flows away from boundaries,
or in regions of sudden change.

Assume shear stress components (from viscous effects) are negligible.

Normal stress components are equal to the negative of the pressure.



5.3 Differential Momentum Equation

5.3.2 Euler’s Equations

Du ap
o p = —=— T p&
For a frictionless flow, the stress components lead to: = Dt dx
Dv  ap N
*Di ay =
Dw ap
—_— = —— a
P, o, | P&

The scalar equation can be written as a general vector equation as:

D - A ~ dps  Ops  p
—(ui +ovj+twk)=—| —i+ —j+ —k | —
P Dr( ) ) ax ayj 0z e

Hence Euler’s Equation

DV Three differential equations formed
Por Vp —pg from applying Newton’s second law

and neglecting viscous effects.



5.3 Differential Momentum Equation

A velocity field is proposed to be

10y _ 10x _
x2 + )72 v__x2+y2 =

(a) Is this a possible incompressible flow? (b) If so, find the pressure gradient Vp assuming
a frictionless air flow with the z-axis vertical. Use p = 1.23 kg/m’.

Solution
(a) The continuity equation (5.2.10) is used to determine if the velocity field is possible.
For this incompressible flow we have 0

Substituting in the velocity components, we have

d 10y d 10x —10p(2x) —10x(2y) |
= +— = = = —20xy +20xy]=0
a't(xz +y2 J ay[ -\.2 =+ }"2 ) (x2 3= }’2 )2 (.\'2 <+ }-'2)2 (_\'2 —+ }.'2)2 [ x) \'}]

The quantity in brackets is obviously zero: hence the velocity field given is a possible
incompressible flow.




5.3 Differential Momentum Equation

(b) The pressure gradient is found using Euler’s equation. In component form we have

the following:
p& =-—2£ + L
Dt ax

. 10y —20xy —10x (x* + )10 —10p(2y)
1.23 — +
X2+ (B +2)P x4+t (x2 + y?)?

— 123 10y (X% +*)(—10) +10x(2x) N -10x  20xy
- x2+y2 (xz +,V2)2 x2 +y2 (x2+y2)2

%ﬂ = pg. = 1.23 kg/m® x (—9.81) m/s? = —12.07 N/m’

_dp: , dp: , dpy _ 123 5. 4 . ,
Thus Vp = Si+ 5j+ Tk =—""——(xi +)i) —12.07k N/m
P dx ay! 9z (x* +yz)z( i)



5.3 Differential Momentum Equation

Assume a steady, constant-density flow and integrate Euler’s equation along a streamline
in a plane flow.

a
n

dz _

= sin@

2 (k),=sin 6
Figure E5.6

Solution
First, let us express the substantial derivative in streamline coordinates. Since the velocity
vector is tangent to the streamline, we can write

V=VFs

where § is the unit vector tangent to the streamline and ¥ is the magnitude of the velocity,
as shown in Figure E5.6. The substantial denvatlve is then, for this plane flow,

ﬂ__ a(Vs) 5;¢)av__+Vﬂ +Vzas
Dt ot at ds ds

The quantity d5/ds results from the change of the unit vector §; the unit vector cannot
change magnitude (it must always have a magnitude of 1), it can only change direction.
Hence the derivative 9s/ds is in a direction normal to the streamline and does not enter
the streamwise component equation. For a steady flow dV/ar = 0. Consequently, in the
streamwise direction, Euler’s equation (5.3.9) takes the form




5.3 Differential Momentum Equation

aV §£ 0z
V — = — — =
P as s

recognizing that the component of k along the streamline can be expressed as (k), = dzlos
(see the sketch above). Note that we use partial derivatives in this equation since velocity
and pressure also vary with the normal coordinate.

The equation above can be written, assuming constant density so that dp/ds = 0, as

af v?
—|p— +p+pgz|=0
(o2 +p+pss]
Integrating along the streamline results in

2

pT + p + pgz = const.

or
2
4 —
— + = + gz = const.
y P8
This is, of course, Bernoulli’s equation. We have integrated along a streamline assuming
constant density, steady flow, negligible viscous effects, and an inertial reference frame,
so it is to be expected that Bernoulli’s equation will result.



5.3 Differential Momentum Equation

5.3.3 Navier-Stokes Equations

Most fluids are Newtonian fluids.
Have a linear relationship between stress components and velocity gradients.
E.g., Water, oil, and air

If a fluid is Newtonian (linearity), and isotropic
Fluid properties are independent of direction at a given position.

Hence stress components and velocity gradients can be related using two fluid
properties:

Viscosity
Second coefficient of viscosity A



5.3 Differential Momentum Equation

5.3.3 Navier-Stokes Equations

The stress-velocity gradient relations/constitutive equations:

O =

0.=

0.: =

—p+2u— +AV-V T.\-_\-=p«[
ox
ay

—p+2u— +AV-V T}-:=M[

Jv
+ —
dx ]

Jw

* )
0x

Jw ]
-+- —

ay



5.3 Differential Momentum Equation

5.3.3 Navier-Stokes Equations

Stokes’s Hypothesis

Relationship between viscosity and the second coefficient of viscosity (for
most gases and monatomic gases).

A 2

From this, it can be said that the negative average of the three normal
stresses is equal to the pressure, i.e.,
1

—;(0-.1:\‘ to, to.)=p



5.3 Differential Momentum Equation

5.3.3 Navier-Stokes Equations

Hence for a homogeneous fluid in an incompressible flow:

Using the continuity equations Homogeneous fluid: A fluid
whose properties are

independent of position.

Du p Pu  Fu  du
p— =—L +pg +ul = + = + =
Dt ax dx- ay- az"
Dv )p ’v v | dv
p— === tpg, tul— t— + —
Dt d) ' ax” ay- 0z"
Dw . . Pw N P w N O’ w
— T " e— g_ = = = = - =
p Dt )Z p K ax- dy- dz-

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a
publicly accessible website, in whole orin part.



5.3 Differential Momentum Equation

5.3.3 Navier-Stokes Equations

The Navier-Stokes equations can be placed in vector form as:

Dur. Dv. Dw- DV
1+ ]+ k =
Dt Dt Dt Dt

op:  dp> , adp-:

—_—1+ =]+ —=k=V

ox ay : dz P
Viui + Vi + Viwk = V2V

With the Laplacian: v = »y o> P

ax* eyt 9z’

The combined vector equation for the Navier-Stokes is:

pﬂ =—Vp + pg + uV*V
Dt



5.3 Differential Momentum Equation

Simplify the x-component Navier—Stokes equation for steady flow in a horizontal, rect-
angular channel assuming all streamlines parallel to the walls. Let the x-direction be in
the direction of flow (Figure E5.7).

y

T

Flow sy h
x
z
72+ b
v A‘
h —— 3 ) on —x

\

uly, )

Solution
If the streamlines are parallel to the walls, only the x-component of velocity will be
nonzero. Letting = w = 0 the continuity equation (5.2.10) for an incompressible flow
becomes

ou

L — )
ax

showing that u = u( y,z). The acceleration is then
0

0 00
2 +ua +42 4 ua—u=0
Dt t b ay az

The x-component momentum equation then simplifies to
0 0

ap & Fu | u
0=—"—+pk. + + =+ —
ax 7£ e [ T 822]
since 8*u/dx* = 0if dwlax = 0 and g, = O for a horizontal channel. We then have
ay az°

With the appropriate boundary conditions (the no-slip conditions), a solution to the
foregoing equation could be sought. It would provide the velocity profiles sketched in
Figure E5.7.




5.3 Differential Momentum Equation
5.3.4 Vorticity Equations

Derived from taking the curl of the Navier-Stokes equations.

Do not contain pressure or gravity terms in Navier-Stokes equations, only
velocity.
w= VXV V XV is the curl of the velocity (cross-

product of the del operator and a vector
function.)

Using this, the vorticity equation can be derived to be:

% = (- V)V + vVe

Assuming J and p are constants.



5.3 Differential Momentum Equation

5.3.4 Vorticity Equations

% =(@-V)V +vVe

The vector form of the vorticity equation (above) can be rewritten as three

scalar equations:

Dw, ou u ou >

—_—=w,— to,— tow—+tvVo,
Dt dx S dy dz

Dw, do v v 2

— =w,— tw,— t+ w.— + vV,
Dt dx S ady dJz '
Dw. Jw Jw ow ,

o, =+ 0w, — + VvV,

— =w‘._ w._

Dt T ox T dy

T 0z



5.3 Differential Momentum Equation
5.3.4 Vorticity Equations (Definitions)

Vortex Line: A line to which the vorticity vector is tangent.
Vortex Tube: (Vortex) A tube whose walls contain vortex lines.

The vorticity equations show that if an inviscid flow is everywhere irrotational
(w =0):

It must remain irrotational since DD—‘: = 0 [Persistence of irrotationality]

If a uniform flow approaches an object, vorticity is created because of
viscosity.



5.3 Differential Momentum Equation

In a snowstorm, the snow is actually scooped out in front of a tree, or post, as shown in
Figure E5.8a. Explain this phenomenon by referring to the vorticity equations.

®
T ' Top
view
:ﬂt ‘9/
B_._,_—/
Vortex_—» A -
twbe & ] e x
o



5.3 Differential Momentum Equation

Solution
Let the velocity approaching the tree be in the x-direction with a velocity gradient du/dz
near the ground. The vorticity components are then (refer to Egs. 3.2.18)

o, =0 wy=%
z

w, =0
The y-component vorticity equation (5.3.24), ignoring viscous effects over the short flow
length, reduces to

Dw, dv
— w —

Dt Ty
Observe from Figure E5.8b that in the vicinity of the tree dv/dy is positive since
Ve > Up > U4 (00/dy can be shown to be positive for negative y also.) Since , and dv/dy
are both positive, Dw, /Dt is positive and @, increases as the vortex tubes approach the
tree. This increased vorticity creates a strong vortex in front of the tree resulting in the
snow being scooped out as shown. This same phenomenon occurs in a sandstorm or in a
water flow around a post in a riverbed. Without the use of the verticity equation, it would
be very difficult to explain.



5.4 Differential Energy Equation

. For an infinitesimal fluid element,
oT

(pro+ 5, ) axay |" dedy 5 :.d:/P“ dy dz o the heat transfer rate is:
Kdyd: — . (')T
oxlx _
" 0=-Kka-
| 2 on
| - .
Kdxds 3—§‘| ! 7 K dx dz %T v o Fourier’s law of heat transfer,
| k : n: Direction normal to the area
iz s o———|—— d
po dxdz //’(x_ e) (PNgfpv)dy)d-' dz T. Temperature
/ . .
2 A4 dx K: Thermal conductivity
A
(pu+—a(pu) dx)dy dz //
dx
ar
ar pw dx dy Kdxdy =— ,
Kd}' dL’ X x+dx az




5.4 Differential Energy Equation

ar

(pw+78(pw) dz) dx dy K dx dy eleea pudydz
iz z+dz
|| /<j:K@ﬁ?|
A} h

| e =
| ,// g
meﬂ| | g meﬂ|
“ayly t - “ayly+a
——— | dz ey
—— | 4——8
po dx dz //'.(x._y._z)_ ——————— (pp +$(pv)dy)d.t dz
s
/// d ? T “
y
(pu+—a(pu)dx)dydz //
dx
oT
T pw dx dy I(d.lrdya—Z .
Kd)'d., x x+dx

The simplified energy equation is:

Dii :
—— =KVT —pV-V
P p

In terms of enthalpy [ i = h — %]

p£ﬂq=KVnT.F£2
Dt Dt



5.4 Differential Energy Equation

For aliquid flow with V-V = 0 and @ = ¢, T (c, is specific heat), the above
simplifies to:

DT ) a is thermal diffusivity
— =aV-T
Dt _ K
a =
PC,

For an incompressible gas flow (and the ideal-gas assumption):

DT ,
— =KVT
PCy Dt



5.4 Differential Energy Equation

A constant-density liquid flows into a wide, rectangular horizontal channel, the walls of
which are maintained at a higher temperature than the liquid, as shown in Figure E5.9.

Assume a variable ., include viscous dissipation, and write the three describing differen-
tial equations for a steady flow.

y
| T
& e —x
-
Ty
Figure E5.9

Solution

Let the x-axis coincide with centerline of the channel and the y-axis be vertical. The
continuity equation would take the form

(=1]

V.v=

[=1]

= A
x Jdy
since w = 0 for the wide channel.

The flow will be primarily in the x-direction, but we must allow for variation of the
y-component . There will be no variation in the z-direction. The accelerations for this
steady flow will be



5.4 Differential Energy Equation

The stress terms contained in Eqgs. 5.3.5 using Eqs. 5.3.10 with V-V = 0, assuming a
variable u, become

2 2
G0 Ty __dp [auau)”a_ua_uan (a_ua_v)

ox dy ax 67 ? Jx dx 5 dy  ox

2
oy iy o (F0 Fo) wd (e a
ax ay ay ax a? dy v ax |dy dx

The differential momentum equations (5.3.5) are then

2
,,(ua_u_ +a_] _ w[a_u . ﬂ) opdmdu +a_u[y . a_]

ax ay dx R | axax aylay dx
2 2
dx ay ay ax ay dydy dx\ady ax

The energy equation simplifies to
2 2 2 2 2
il O OPE L 0P +2_“[3_“]+3_” + 1fou v
ax ay ax? a? c, [\ax dy 2lay  ox

where we have assumed K to be constant. The nonlinear, partial differential equations
above, although quite formidable when attempting an analytic solution, could be solved
numerically with the appropriate boundary conditions, and for a sufficiently low flow rate
so that laminar flow exists (a turbulent flow is always unsteady and three-dimensional).



5.4 Differential Energy Equation

Show that for an ideal gas, |Dp/Dt| << |pV - V] in a low-speed flow, thereby concluding
that Eq. 5.4.15 is the appropriate equation.

Solution
Let us consider a steady, uniform flow in a pipe so that |V | =« and Dp/Dt = udplox.
Then the problem can be stated as follows: Show that

|u6_p’ << ‘pa—u
dx ax

Viscous effects are small and would not change the conclusion, so we can ignore any
possible viscous effects. Then Euler’s equation (5.3.7) allows us to use

Using the definition of the speed of sound (Eq. 1.7.17) and the equation of state, we
see that

_ |kp — 2P
c=\p or p=cy

Thus

i
pax kpax

Our problem can now be stated: Show that

du A du
w? _| <<= |—
’p dax k pg{
Or, more simply, is it true that

uz«i?
k

This can be seen to be true since we have assumed for a low-speed gas flow that the speed
of the gas is much less than the speed of sound (e.g..,u < 0.3¢ or M < 0.3). We know that
k is of order unity (k = 1.4 for air), so it will not affect our conclusion that

Dp .
|E| <|pV-V]|



5.5 Summary

- The vector form equations for incompressible flows are:

Continuity: V-v=0
Momentum: p% =—Vp+ pg + uV’v
DT ) .
Energy: Dr =aVT + ®lpc, Liquids
DT , :
Energy: chT = KV°T + ® Incompressible gases
4
Vorticity: Do _ (- V)V + vV

Dt



5.5 Summary (Definitions)

Newtonian Fluid — One with a linear relationship between stress
components and velocity gradients.

Isotropic Fluid — One where the fluid properties are independent of direction.

Homogeneous Fluid — One where fluid properties do not depend on
position.

Incompressible Flow — One where the density of a particle is constant (l;—f =
0)

The vector form equations of the previous slide assumes all of the above, in
addition to an inertial reference frame.



5.5 Summary (Fundamental Laws - Continuity)

Continuity
Rectangular

du Jv dJw
—_t =+ —=0
ox ay dz

Cylindrical
19 () +19% | 90 _
ror r oo dz
Spherical
1 0,, 1 9 . 1 oy,
——(r'v,) + ———(v sinfh) + ——— =
r’ ar( ) rsinf 80( ’ ) rsinf dd



5.5 Summary (Fundamental Laws - Momentum)

Momentum
Rectangular
5
Du_ —li +g. +vVu
Dt pox
0
Do __1% +g, + vV
Dt pay
Dw _ _Lip +g. +vVw
Dt poz
D d d d d

— = —+tu— +o— +tw—
Dt at ax ay a0z

=2, .9
0x- ay” dz"
Cylindrical
%—v_éz—ld_pJ{-g'-{_v(VZv’_z;:_
Dt r par r-
Do, + 2% = _Llor +g, + v(V2 v, + ——
Dt r pr 00
Do, 14
Do, 1P 4ty
Dt p oz
D _ 9 d v, 0@ J

D ot "or r 96 oz
9* +la 1 & 9*

v=y L =

ar’ ror r_QW az°

Spherical

2 2
Dv, vy +v,

2 dv,
r’ o

d
Dt ot "or rdd rsinf ap
1

Dt r
, )
_Lor .y V(V-v, o 2%
par ° r? r’ a6
_ 2yeotd 2 0y,
r’ r’sinf ad
Do, A v, cot f
Dt r
1a 2 29
=L g v Vo, - 2
prag - r- o6
Uy 2cosf iy
r’sin’  r’sin’ a¢
Do, L Del | Vo cot 6
Dt r r
1 i) , v,
= —— i—p+g¢+V(V‘v¢— —
prsinf ap r-sin@

2 9o, + 2 cosf dv,
r’sin’g a¢  r’sin’@d¢p

+vi+&i+ U 0

d( ,ad 1 d( . d
-—| r’— | + ———| sinf—
rear ar r’sinf 96 a0

L @
r’sin’f a¢’




5.5 Summary (Fundamental Laws - Energy)

Energy Spherical

Rectangular 2
5 o2t — kT 42 (av,) + (laﬂ +
Dt r o8

2 2 2 ar
pD—h =KV'T +2u ((’)_u) +{ 24 (a_w)
Dt dx ay dz

LMo Y Y
2lay ax 200z ay

4 Lfou  dw
2\ az ax

. 1 6& N v_,vocota\-
rsinf dd ror )

~

rsinf d¢ r 99\ siné

r sinf a¢ ar\ r

{[ 1 ()vo_i_sinOi Vs

Cylindrical
Dh av. \ 1 do o\ 3v. Y d(v 190 Y
Dh _ gver 4 o[22 +__o+_r)+( ) (%), Lo
th ﬂ[( ar) (r a6 r dz - rar r N r a6

+ l(lai + ('ng) + l(aﬁ + 6&)
2\r 9 iz 2\ a9z ar

l(lav, dv, v,,)2
4| —— 22
2\ r 96 ar r




5.5 Summary (Fundamental Laws - Stresses)

Stresses
Rectangular
du
O =—p+2u— Ty
0x i
Jav
o, =—p+ 2/“‘_ Ty:
» ay .
i
0..'.' = —p + 2"Lﬂ T\'.'
daz ’
Cylindrical
)
o,=—p+ 2,u,ﬂ
ar
ldv, v
roe r
0.
o.=—p+2u=E

dz

_ du

L 3y
_ | ov
_ (614

® 0z
Ty — K
70: = /“’
T. — K

[ 9
r—
| Jr
Kl
| dz

KL

| dz

(

0,
r

2

)

1 9o,

r 06

dv,

—_ 4 =

ar

]

Spherical
o,=—p+ 2;1,0&
ar
r o6 r
1 dv, v v, cot
Og =—p+2 —_— 4+ =
* P p{rsine dg r r }
[ (') 'U,; laz.’,
T S| r—|— | +——
o #_ ar( r) r 60]
Tu=ﬂ—5inoi 2 |y %
| r 30{sing rsinf g¢
N l%] T,, = L 9, 92
e ¢ 'u_rsinO()d) ar\ r

|



