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Chapter 4 
The Integral 
Forms of the 
Fundamental 

Laws
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• The integral quantities in fluid mechanics are contained in the three laws:
• Conservation of Mass
• First Law of Thermodynamics
• Newton’s Second Law

• They are expressed using a Lagrangian description in terms of a system 
(fixed collection of material particles).

4.2 The Three Basic Laws
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• CONSERVATION OF MASS: Mass of a system remains constant.

4.2 The Three Basic Laws

Integral form of the mass-conservation 
equation. ρ = Density; dV = Volume occupied 
by the particle

• FIRST LAW OF THERMODYNAMICS: Rate of heat transfer to a 
system minus the rate at which the system does work equals the 
rate at which the energy of the system is changing.

Specific energy (e): Accounts for kinetic 
energy per unit mass (0.5V2), potential 
energy per unit mass (gz), and internal 
energy per unit mass (𝜇").
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• NEWTON’S SECOND LAW: Resultant force acting on a system 
equals the rate at which the momentum of the system is changing.

4.2 The Three Basic Laws

In an inertial frame of reference.

• Moment-of-Momentum Equation: Resultant moment acting on a 
system equals the rate of change of the angular momentum of the 
system.
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• Control Volume: A region of space into which fluid enters and/or from 
which fluid leaves.

4.2 The Three Basic Laws
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• Interested in the time rate of change of an extensive property to be 
expressed in terms of quantities related to a control volume.

• Involves fluxes of an extensive property in and out of a control volume.
• Flux is the measure of the rate at which an extensive property crosses an 

area.

4.3 System-to-Control-Volume Transformation
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• The flux across an element dA is:

4.3 System-to-Control-Volume Transformation

Control surface: The surface 
area that completely encloses 
the control volume.

𝑛$: Unit vector normal to dA (always 
points out of the control volume)
η: Intensive property

• Only the normal component of 𝑛$.V contributes to this flux.
• Positive component means a flux out of the volume.
• Negative component indicates a flux into the volume.
• If the net flux is positive: Flux out > flux in
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• The Reynolds transport theorem is a system-to-control-volume 
transformation.

4.3 System-to-Control-Volume Transformation

Reynolds Transport Theorem

• This is a Lagrangian-to-Eulerian transformation of the rate of change of 
an extensive quantity.

• First part of integral: Rate of change of an extensive property in the control 
volume.

• Second part of integral: Flux of the extensive property across the control 
surface (nonzero where fluid crosses the control surface).
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• An equivalent form of the control volume is:

4.3 System-to-Control-Volume Transformation

Reynolds Transport Theorem

• The time derivative of the control volume is moved inside the integral:
• For a fixed control volume, the limits on the volume integral are independent 

of time. 
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4.3 System-to-Control-Volume Transformation
4.3.1 Simplifications of the Reynolds Transport Theorem

• Steady-state (time derivative is zero):

• Often one inlet (A1), and one outlet (A2):

• For uniform properties over a plane area:
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4.3 System-to-Control-Volume Transformation
4.3.1 Simplifications of the Reynolds Transport Theorem

• Unsteady flow with uniform flow 
properties:
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• For a steady flow, this simplifies to:

4.4 Conservation of Mass

• Uniform flow with one entrance and one exit:

Mass of a system is fixed.

For constant density, the continuity 
equation is only dependent on A and V
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• If the density is uniform over each area, with nonuniform velocity profiles:

4.4 Conservation of Mass

• The mass flux �̇� (kg/s) is the mass rate of flow:

• Where Vn is the normal component of velocity.

(averages can also be used)
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4.4 Conservation of Mass

• The flow rate (or discharge) Q (m3/s) is the volume rate of flow:

• Mass flow rate is often used in compressible flow. The flow rate is often 
used to specify incompressible flow.
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4.4 Conservation of Mass
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4.4 Conservation of Mass
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4.4 Conservation of Mass
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4.4 Conservation of Mass
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4.4 Conservation of Mass
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• This equation is required if heat is transferred (boiler/compressor) or work 
is done (pump/turbine).

• Can relate pressures/velocities when Bernoulli’s equation cannot be used.

4.5 Energy Equation

Where e is the specific energy and consists of the specific kinetic energy, specific potential 
energy, and specific internal energy.

• In terms of a control volume:
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4.5 Energy Equation

• In terms of a control volume:

• �̇�: Rate-of-energy transfer across the control surface due to a temperature 
difference.

• �̇�: Work-rate term due to work being done by the system.
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4.5 Energy Equation

• The work-rate term is from the work being done by the system.
• Rate of work (Power) is the dot product of force with its velocity.

4.5.1 Work-Rate Term

The velocity is measured w.r.t. a fixed inertial 
reference frame. Negative sign is because work 
done on the control volume is negative. 

• If the force is from variable stress over a control surface:

• τ is a stress vector acting on an elemental area dA [A differential force]. 
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4.5 Energy Equation
4.5.1 Work-Rate Term
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4.5 Energy Equation

• From the previous equation, the energy equation can be rewritten as:

4.5.2 General Energy Equation

• Losses are the sum of all terms for unusable forms of energy.

• Can be due to viscosity (causes friction resulting in increased internal 
energy).

• Or due to changes in geometry resulting in separated flows.
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4.5 Energy Equation

• For steady-flow with one inlet and one outlet (with uniform profile) and no 
shear work, the following energy equation is used:

4.5.3 Steady Uniform Flow

• Where hL is the head loss (dimensions of length).

•
)*

+
is the velocity head, and ,

-
is the pressure head. 

Where K is the loss 
coefficient
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4.5 Energy Equation

• For steady-flow with one inlet and one outlet (with uniform profiles) and 
no shear work, negligible losses, and no shaft work:

4.5.3 Steady Uniform Flow

• The pump head, HP is the energy term associated for a pump [./̇

0̇+
]. If a 

turbine is involved, the energy term is called the turbine head. 

Almost identical to Bernoulli’s 
equation for a constant density flow.
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4.5 Energy Equation

• If a turbine/pump is used, the efficiency of a device is needed, ηT

• The power generated by the turbine is:

4.5.3 Steady Uniform Flow

• The power required by a pump is: The power is calculated in 
Watts
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4.5 Energy Equation

• If a uniform velocity profile assumption cannot be used, the velocity 
distribution should be corrected:

• Using a kinetic-energy correction factor α

4.5.4 Steady Nonuniform Flow

• The term that accounts for the flux in kinetic energy is:

With 𝑉3 being the average velocity over area A

• The final equation that account for this nonuniform velocity distribution is:
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4.5 Energy Equation
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4.5 Energy Equation
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4.5 Energy Equation
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4.5 Energy Equation
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4.5 Energy Equation
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4.5 Energy Equation
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4.5 Energy Equation
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4.6 Momentum Equation

• Newton’s second law (momentum equation): The resultant force acting on 
a system equals the rate of change of momentum of the system in an 
inertial reference frame.

4.6.1 General Momentum Equation

• For a control volume:
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4.6 Momentum Equation

• If flow is uniform and steady, for N number of entrances and exits, the 
previous equation can be simplified to:

4.6.2 Steady Uniform Flow

Horizontal nozzle 
with one entrance 

and one exit

• The momentum equation simplifies to:
With continuity:
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4.6 Momentum Equation
4.6.2 Steady Uniform Flow

Horizontal nozzle 
with one entrance 

and one exit

• To determine the x-component of the force of the joint on the 
nozzle:

As (V1)x = V1 and (V2)x = 0
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4.7 Summary
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4.8 Summary
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