Chapter 4

The Integral

Forms of the

Fundamental
Laws



4.2 The Three Basic Laws

The integral quantities in fluid mechanics are contained in the three laws:
Conservation of Mass
First Law of Thermodynamics
Newton’s Second Law

They are expressed using a Lagrangian description in terms of a system
(fixed collection of material particles).

System at
met el o gfRe P\

System at
time 1 + At

Figure 4.1 Example of a system in fluid mechanics.



4.2 The Three Basic Laws

CONSERVATION OF MASS: Mass of a system remains constant.

D Integral form of the mass-conservation
E.[ pd¥ =0 equation. p = Density; d\-= Volume occupied
- by the particle

FIRST LAW OF THERMODYNAMICS: Rate of heat transfer to a
system minus the rate at which the system does work equals the
rate at which the energy of the system is changing.

Specific energy (e): Accounts for kinetic
0-W= EI epd¥ energy per unit mass (0.5V?), potential
Dt J oy energy per unit mass (gz), and internal
energy per unit mass ().



4.2 The Three Basic Laws

NEWTON’S SECOND LAW: Resultant force acting on a system
equals the rate at which the momentum of the system is changing.

D In an inertial frame of reference.

Moment-of-Momentum Equation: Resultant moment acting on a
system equals the rate of change of the angular momentum of the
system.

SM = ﬁj r X Vpd¥
Dt sys



4.2 The Three Basic Laws

Control Volume: A region of space into which fluid enters and/or from

which fluid leaves.

System and control I
volume identical
at time ¢

Control volume
attime f + At

I System at

/limcr + Af

Figure 4.2 Example of a fixed control volume and a system: (a) time 7: (b) time ¢ + Az,



4.3 System-to-Control-Volume Transformation

Interested in the time rate of change of an extensive property to be
expressed in terms of quantities related to a control volume.
Involves fluxes of an extensive property in and out of a control volume.

Flux is the measure of the rate at which an extensive property crosses an
area.



4.3 System-to-Control-Volume Transformation

.V

Control surface: The surface
area that completely encloses
the control volume.

Figure 4.3 Illustration showing the flux of an extensive property.

. The flux across an element dA is:

7i: Unit vector normal to dA (always
points out of the control volume)
n: Intensive property

flux acrossdA = npn-V dA

. Only the normal component of -V contributes to this flux.
Positive component means a flux out of the volume.
Negative component indicates a flux into the volume.
If the net flux is positive: Flux out > flux in



4.3 System-to-Control-Volume Transformation

Reynolds Transport Theorem

The Reynolds transport theorem is a system-to-control-volume
transformation.

DN,, d - 2 v
De = I J.:\ np d¥ Jc sl'r;pll-\ dA

This is a Lagrangian-to-Eulerian transformation of the rate of change of
an extensive quantity.
First part of integral: Rate of change of an extensive property in the control
volume.

Second part of integral: Flux of the extensive property across the control
surface (nonzero where fluid crosses the control surface).



4.3 System-to-Control-Volume Transformation

Reynolds Transport Theorem

DN,, d

= — 0 (1V~‘-J on-V dA
Dt dt J’;“T” cs.T"

An equivalent form of the control volume is:

DN, [ -
D;H - Jc.v (:_:(pn)d;: N Jc s.T'p" v d"

The time derivative of the control volume is moved inside the integral:

For a fixed control volume, the limits on the volume integral are independent
of time.



4.3 System-to-Control-Volume Transformation

4.3.1 Simplifications of the Reynolds Transport Theorem

- Steady-state (time derivative is zero):

- Often one inlet (A;), and one outlet (A,):

For uniform properties over a plane area:

DN, d , i
sys _ 0 1'.4 - ‘[ n-v IA
Df (11 Jl‘T'p ‘ c.s.np ‘
DN [ a
s _ = 1;.’+J’ .\ 1A
D_L; Jc_,,_ = (pm)c - npn- Vv
DN, -
DI Jl.v.np " ‘
DN', . | {f .
# =J.‘:772P:L': dA — Jm"‘llplyl dA
DN,, . :
5 = mPVady —mp A,



4.3 System-to-Control-Volume Transformation

4.3.1 Simplifications of the Reynolds Transport Theorem

DN.,, — i J np d¥ + '[ npn-V dA
Dt dt Jev. cs.

DN,, [ & .
—= = | Z(pn)d¥ + J -VdA

Unsteady flow with uniform flow DN d(
New _ 1 dmp) 4
properties: T =¥ T +mptod, — nipliA




4.4 Conservation of Mass

Dm,, _ DJ‘ p d¥ =0

Dt Dt Mass of a system is fixed.

For a steady flow, this simplifies to:

"‘spfl-\' dA =0

“C

Uniform flow with one entrance and one exit:
p AV, =p AV,

For constant density, the continuity
equation is only dependent on Aand V



4.4 Conservation of Mass

Figure 4.7 Nonuniform velocity profiles.

If the density is uniform over each area, with nonuniform velocity profiles:
p, | Vida=p, | V,dA pV;A, = p.V, A, (averages canalso be used)

~

The mass flux m (kg/s) is the mass rate of flow: m = |4 pV, dA

Where V,, is the normal component of velocity.



4.4 Conservation of Mass

Figure 4.7 Nonuniform velocity profiles.

-

The flow rate (or discharge) Q (m?®/s) is the volume rate of flow: O =

Mass flow rate is often used in compressible flow. The flow rate is often
used to specify incompressible flow.



4.4 Conservation of Mass

Water flows at a uniform velocity of 3 m/s into a nozzle that reduces the diameter from
100 mm to 20 mm (Figure E4.1). Calculate the water’s velocity leaving the nozzle and the

flow rate.

100 mm dia.

i c;.s. 20 mm dia.
V, ! —_—> V.
1 _ 2

o |

Figure E4.1
Solution
The control volume is selected to be the inside of the nozzle as shown. Flow enters the con-
trol volume at section 1 and leaves at section 2. The simplified continuity equation (4.4.6)
is used since the density of water is assumed constant and the velocity profiles are uniform:

AV, = A4V,
2
,'_Vz — Vlﬁ = M=7Sm[s
A, a X 0.02%4

The flow rate, or discharge, is found to be

0 = W4,
=3 X X 0.1/4 = 0.0236 m°s



4.4 Conservation of Mass

Water flows in and out of a device as shown in Figure E4.2a. Calculate the rate of change
of the mass of water (dm/dr) in the device.

V,=10mh vice

ity = 4 ks
(a)

Figure E4.2

Solution
The control surface of the control volume selected is shown in Figure E4.2b. The continuity
equation (4.4.2), with three surfaces across which water flows, takes the following form:

= i I pdV+I pi-VdA
dt Jev. e,

dm
= = p AV, + p AV + pu A

where we have assumed the density to be constant over the volume and we have used
V; -l = =V, since i, points out of the volume, opposite to the direction of V. The last
three terms come from the area integral. In terms of the quantities given, the above can
be expressed as

dm ,
0= r —p AV, + iy + 90y

dm 0.04
= = — 1000 kg/m* % 10m/s + 4k
= g/m” x [uxlo ]m s s

+1000kg/m* X (0.008) m*/s
This is solved to yield

dm
— =383k
dt 38.3kghs

Hence the mass is increasing at the rate of 38.3 kg/s. To accomplish this, the device could
contain a spongelike material that absorbs water.



4.4 Conservation of Mass

A uniform flow of air approaches a cylinder as shown in Figure E4.3a. The symmetrical
velocity distribution at the location shown downstream in the wake of the cylinder is
approximated by

2
u(y)=1.25+yT “l<y<l

where u( y) is in m/s and y is in meters. Determine the mass flux across the surface 4B per
meter of depth (into the paper). Use p = 1.23 kg/m’.

—{ 1.5 m/s
- Control
volume
- C
E &,
- ' n
— H|  Tteeel [
N i
A

» B
n

(a) (b)
Figure E4.3

Solution

Select A BCD as the control volume (Figure E4.3b). Outside the wake (a region of retarded
flow) the velocity is constant at 1.5 m/s. Hence the velocity normal to plane 4Dis 1.5 m/s.
No mass flux crosses the surface CD because of symmetry. Assuming a steady flow, the
continuity equation (4.4.3) becomes

0= J’Mp\uﬁd,q

Mass flux occurs across three surfaces: 4B, BC, and AD. Thus the equation above takes
the form

0= mev.ﬁau + L"pv-ﬁdA + LupVidA

=it + || pu(y) 1X dy — pkg/n® X 1.5m/s X Hm X Im

where the negative sign for surface 4D results from the fact that the unit vector points
out of the volume to the left while the velocity vector points to the right. Recall that a
negative sign in the steady-flow continuity equation is always associated with an influx
and a positive sign with an outflux. Now, we integrate out to 1 m instead of H, since the
mass that enters on the left beyond 1 m simply leaves on the right with no net gain or loss.
So, letting H = | m, we have

1
0 = riten + J' 1.23(1.25 +%)dy —(123%1X1.5)
o
Perform the integration and there results

me = 0.205 kg/s per meter




4.4 Conservation of Mass

A balloon is being inflated with a water supply of 0.6 m¥s (Figure E4.4a). Find the rate
of growth of the radius at the instant when R = 0.5m.

Ag N
05m
Vi Vi z_b
dR 4, N
dt Ve
@ (®)
Figure E4.4

Solution

The objective is to find dR/dt when the radius R = 0.5 m. This growth rate V; = dR/dt is
the same as the water velocity normal to the wall of the balloon. Therefore, we select as
our fixed control volume a sphere with a constant radius of 0.5 m (see Figure E4.4b) so
that we can calculate the velocity of the water at the surface at the instant shown moving
radially out at R = 0.5 m. The continuity equation is written as

0= Jﬂ%d# + _[ pV -dA
o

The first term is zero because the density of water inside the control volume does not
change in time. Further, the water crosses two areas: the inlet area A4, with a velocity ¥; and
the remainder of the sphere surface 4, with a velocity ;. We will assume that 4, << 4.
The continuity equation then takes the form

0=—pAVi+pAV,

Since the flow rate into the volume is 4,/; = 0.6 m’/s and 4, = 47 R* assuming that A, is
quite small, we can solve for /3. AtR = 0.5m

AJ’] 0.6 mjls
= = =0.191 m/
B 4rR*  4m X 0.5 m? :
dR
o= =0.191m/
dt —=

‘We have used a fixed control volume and allowed the moving surface of the balloon to
pass through it at the instant considered. With this approach it is possible to model situ-
ations in which surfaces, such as a piston, are allowed to move.



4.4 Conservation of Mass

This example shows that there may be more than one good choice for a control volume.
We want to determine the rate at which the water level rises in an open container if the
water coming in through a 0.10-m? pipe has a velocity of 0.5 m/s and the flow rate going
out is 0.2 m*/s (Figure E4.5a). The container has a circular cross section with a diameter
of 0.5 m.

dh/dt
""""""" o= e
e

0.5 mJs . h(t) 0= 02.m%s
i )
Az 01 mp Tessssssceas
(a) )
Figure E4.5
Solution

First we select a control volume that extends above the water surface as shown in
Figure E4.5a. Apply the continuity equation (Eq. 4.4.2):

di _[ pd¥ +p(—V)A, +pVy4, =0
t Jov.
in which the first term describes the rate of change of mass in the control volume. Hence,

neglecting the airmass above the water, we have

d(phmD*14)

o —pVid +p0, =0

Divide by the constant p,

wD* dh
o = VA + O,

The rate at which the water level is rising is then

ﬁ = V,A, — Qz
dt wD*4

Thus

dh _ (05%0.1-02) m’/s
dt (m X 0.5%/4)m?

= —0.764 m/s

The negative sign indicates that the water level is actually decreasing.

Let’s solve this problem again but with another choice for the control volume, one
with its top surface below the water level (Figure E4.5b). The velocity at the top surface
is then equal to the rate at which the surface rises, i.e., di/dr. The flow condition inside

the control volume is steady. Hence we can apply Eq. 4.4.4. There are three areas across
which fluid flows. On the third area, the velocity is dh/dt; hence the continuity equation
takes the form

dh
-4, + +p——D*=0
p(-")A, +p0, pdt 2
so that
dh _ Vi4 — 0O
dt wD*14

This is the same result as given above.



4.5 Energy Equation

This equation is required if heat is transferred (boiler/compressor) or work
is done (pump/turbine).
Can relate pressures/velocities when Bernoulli's equation cannot be used.

. D
O-W="| epa¥
D t J 5ys

Where e is the specific energy and consists of the specific kinetic energy, specific potential
energy, and specific internal energy.
€ = = +gz+u

-

. e d
In terms of a control volume: Q- W = ‘7

at Jew.

ep d¥ + J. peV-n dA



4.5 Energy Equation

. . d )
In terms of a control volume: € — W = — ] ep d¥ + j

at Jew. C.8

peV-h dA

Q: Rate-of-energy transfer across the control surface due to a temperature
difference.

W : Work-rate term due to work being done by the system.



4.5 Energy Equation

4.5.1 Work-Rate Term

The work-rate term is from the work being done by the system.
Rate of work (Power) is the dot product of force with its velocity.

. ~_ Thevelocity is measured w.r.t. a fixed inertial
W =—F-V, reference frame. Negative sign is because work
done on the control volume is negative.

If the force is from variable stress over a control surface;
W=—[ 7V, dA

T is a stress vector acting on an elemental area dA [A differential force].



4.5 Energy Equation

4.5.1 Work-Rate Term

W =J.‘.pﬁ-\"dA + Wb + ”/shear + WI

J pn-V dA Work rate resulting from the force due to pressure moving at the control
surface. It is often referred to as flow work.
W, Work rate resulting from rotating shafts such as that of a pump or turbine,
or the equivalent electric power.
Work rate due to the shear acting on a moving boundary, such as a
moving belt.
W, Work rate that occurs when the control volume moves relative to a fixed
reference frame.

W,

shear



4.5 Energy Equation

4.5.2 General Energy Equation

From the previous equation, the energy equation can be rewritten as:

: { D | .
- W, = = ep d¥ +J (e + %]pn-\-"dA

0 — W, — W,
N ® dt Jew.

/
shear

Losses are the sum of all terms for unusable forms of energy.

losses = —Q + % J. iipdV + J. iipV-ndA
at c.v. c.s
Can be due to viscosity (causes friction resulting in increased internal

energy).
Or due to changes in geometry resulting in separated flows.



4.5 Energy Equation

4.5.3 Steady Uniform Flow

For steady-flow with one inlet and one outlet (with uniform profile) and no
shear work, the following energy equation is used:

Where h is the head loss (dimensions of length).

[,:_ — 1~‘1| Q b= AL Wher.e .K is the loss
h, = - 2¢ coefficient

g mg

Ve, ,
] is the velocity head, and % is the pressure head.



4.5 Energy Equation

4.5.3 Steady Uniform Flow

For steady-flow with one inlet and one outlet (with uniform profiles) and
no shear work, negligible losses, and no shaft work:

|

(RN SN N U S ;
+z, = + Z Almost identical to Bernoulli’s

, Do
& Y2 £ N equation for a constant density flow.

ro

The pump head, Hp is the energy term associated for a pump [%]. If a
turbine is involved, the energy term is called the turbine head.



4.5 Energy Equation

4.5.3 Steady Uniform Flow

If a turbine/pump is used, the efficiency of a device is needed, nr
The power generated by the turbine is:

Wy = mgHmy = yOHm;
m=pAV

The power required by a pump is: The power is calculated in
Watts

mgH, _ yOH,
Ne Ne

W, =




4.5 Energy Equation

4.5.4 Steady Nonuniform Flow

If a uniform velocity profile assumption cannot be used, the velocity
distribution should be corrected:
Using a kinetic-energy correction factor a

J' V3dA

VA
The term that accounts for the flux in kinetic energy is:

a:

l pj V3 dA4 = l apl73 4 With VV being the average velocity over area A
5 ’ ~ 4

—

The final equation that account for this nonuniform velocity distribution is:

ro

Vi V-
Hy+ey=— + 2 42 =H, +a—+”- +z, +h

2¢ v 2¢ v



4.5 Energy Equation

The pump of Figure E4.6 is to increase the pressure of 0.2 m¥s of water from 200 kPa to
600 kPa. If the pump is 85% efficient, how much electrical power will the pump require?
The exit area is 20 cm above the inlet area. Assume inlet and exit areas are equal.

) 600 kPa
200 kP /Q#j
© (pump O |[2m
Figure E4.6

Solution

The energy equation (4.5.24) across the pump provides the energy delivered to the water
as a pump head:

HP= P — P +é_z]
Y
_ (600000 — 200 000)N/m?
9810 N/m’

where ¥, = V] since the inlet and exit areas are equal, and any losses are accounted for
with the efficiency of Eq. 4.5.26. That equation provides the power required by the pump:

+02m=41.0m

W, = YQH;
Ne
_ 9810 N/m* X 0.2m?%/s X 41.0m

= 94600 J/s or 94.6 kW
0.85




4.5 Energy Equation

Water flows from a reservoir through a 800-mm-diameter pipeline to a turbine-generator
unit and exits to a river that is 30 m below the reservoir surface. If the flow rate is 3 m*/s,
and the turbine-generator efficiency is 88%, calculate the power output. Assume the loss
coefficient in the pipeline (including the exit) to be K = 2.

Turbine/Generator

Wr

Figure E4.7
Solution
Referring to Figure E4.7, we select the control volume to extend from section 1 to section 2
on the reservoir and river surfaces, where we know the velocities, pressures, and elevations;
we consider the water surface of the left reservoir to be the entrance and the water surface
of the river to be the exit. The velocity in the pipe is

l’=g=_32 =597 m/s
A @ X084

Now, consider the energy equation. We will use gage pressures so that p, = p, = 0; the
datum is placed through the lower section 2 so that z, = 0; the velocities ¥; and ¥; on the
reservoir surfaces are negligibly small; X is assumed to be based on the 800 mm-diameter
pipe velocity. The energy equation (4.5.24) then becomes

fofeformncffofoes

2 2
20 = H+2597 m*/s*

2 X 9.81 m/s*
=264m

From this the power output is found using Eq. 4.5.25 to be

Wy =3 m/s* X 9810 N'm’ X 26.4 m X 0.88 = 684 kW

In this example we have used gage pressure; the potential-energy datum was assumed to
be placed through section 2, ¥ and ¥; were assumed to be insignificantly small, and K was
assumed to be based on the 762-mm-diameter pipe velocity.



4.5 Energy Equation

The venturi meter shown reduces the pipe diameter from 100 mm to a minimum of 50 mm
(Figure E4.8). Calculate the flow rate and the mass flux assuming ideal conditions.

Figure E4.8

Solution
The control volume is selected as shown such that the entrance and exit correspond to the

sections where the pressure information of the manometer can be applied. The manom-
eter’s reading is interpreted as follows:

Ps =P»
p+y(z+12)=p, +yz +13.6y X 1.2

where z is the distance from the pipe centerline to the top of the mercury column. The
manometer then gives

BB —(136-1)x12=1512m
Y



4.5 Energy Equation

Continuity (4.4.6) allows us to relate V; to V] by

WA, = V4,
Y, = A X104

=Dy =I"__ "y =
A4, ' wx54 ! !

The energy equation (4.5.17) assuming ideal conditions (no losses and uniform flow) with
h, = W = 0 takes the form

2 __y2 _
0=Vz Vl_*_PZ 4 +(M

2g Y
2 _ 172
2g
. ¥, =4.45mfs

The flow rate is
0 = AV, = (m X 0.05%) X 4.45 = 0.0350 m¥s
The mass flux is

m = pQ = 1000 X 0.035 = 35.0 kg/s



4.5 Energy Equation

The velocity distribution for a certain flow in a pipe is V' (r) = V(1 — r?/5}?), where r, is

the pipe radius (Figure E4.9). Determine the kinetic-energy correction factor. Using Eq. 4.5.27, there results

i dA = 27r dr J’ V3dA
E— - T =
o 1
N *E 0 T " J.oo Vws (1= 12 115)2mrr 16 % 3 3
: ! = 3 =—J l——+—F — —|rdr
= 1 - r Jo N R
i —Voax | T
) o 2
' - E[i _ 3 3% i]
Figure E4.9 7l 2 4 6 8
Solution
To find the kinetic-energy correction factor &, we must know the average velocity. It is Consequently, the kinetic energy flux associated with a parabolic velocity distribution
(combine Eqs. 4.4.10 and 4.4.11) across a circular area is given by
VdA 2 . 772
Ko .V % _
V=j pV fi—dAd = 2 X T = V72
4 2 2
1 r 20V [ = . e . . . ..
= — J Voar| | — = Rardr = = r——|dr Parabolic velocity distributions are encountered in laminar flows in pipes and between
g Jo T T 0 e

parallel plates, downstream of inlets and geometry changes (valves, elbows, etc.). The
2V (:;,2 I ] 1 Reynolds number must be quite small, usually less than about 2000.



4.5 Energy Equation

The drag force on an automobile (Figure E4.10) is approximated by the expression
0.15pV2 A, where A is the projected cross-sectional area and V, is the automobile’s speed.
If 4 =1.2m? calculate the efficiency 1 of the engine if the rate of fuel consumption f
(the gas mileage) is 15 X 10° km/m? and the automobile travels at 90 km/h. Assume that
the fuel releases 44 000 kJ/kg during combustion. Neglect the energy lost due to the
exhaust gases and coolant and assume that the only resistance to motion is the drag force.
Use p,, = 1.12kg/m* and py, = 680 kg/m’.

Figure E4.10

Solution
If the car is taken as the moving control volume (note that the control volume is fixed),
as shown, we can simplify the energy equation (Eq. 4.5.3 in combination with 4.5.11) to

0 W, =0



4.5 Energy Equation

since all other terms are negligible; there is no velocity crossing the control volume, so
Vi = 0 (neglect the energy of the exhaust gases); there is no shear or shaft work; the
energy of the c.v. remains constant. The energy input Q which accomplishes useful work
is 7) times the energy released during combustion; that is,

Q =1h, X 440007 ks

where rii, is the mass flux of the fuel. The mass flux of fuel is determined knowing the rate
of fuel consumption f and the density of fuel as 680 kg/m?, as follows:

distance _ V. xXtme _ V. _ pl.
volume  Q Xtime i lp, Hy
with ¥, = 90000/3600 = 25m/s, we have, using f = 15 X 10° m/m’,
680 X 25

ﬂlf
sy = 0.001133 kg/s

=

IS X108 =

The inertial work-rate term is

W, = V. X drag
=0.15pV74 =0.15 X 1.12 X 25° X 1.2 = 3150 J/s
Equating Q = W,, we have

440009 x 0.001133 =3.15
=~ =0.0632 or 6.32%

This is obviously a very low percentage, perhaps surprisingly low to the reader. Very
little power (3.15k)/s = 4.22 hp) is actually needed to propel the automobile at 90 km/h.
The relatively large engine, needed primarily for acceleration, is quite inefficient when
simply propelling the automobile.

Note the importance of using a stationary reference frame. The reference frame
attached to the automobile is an inertial reference frame since it is moving at constant
velocity. Yet the energy equation demands a stationary reference frame allowing the energy
required by the drag force to be properly included.



4.6 Momentum Equation

4.6.1 General Momentum Equation

Newton’s second law (momentum equation): The resultant force acting on
a system equals the rate of change of momentum of the systemin an
inertial reference frame.

2F = 2! pVd¥
Dt

EVES

For a control volume: 3F = % J pVd¥ + J pV(V-n)dA
([ C.V. C.S5. .



4.6 Momentum Equation

4.6.2 Steady Uniform Flow

If flow is uniform and steady, for N number of entrances and exits, the
previous equation can be simplified to:

3F = Z piA;V,(V,-n)
i=1

The momentum equation simplifies to:
3SF = p,A,V,V, —p, AV, V,  With continuity: m = p,4\V, = p,A,V;

SF =m(V, — V)

! SFE. =m(V, —V,
—E SF, =m(V,, — V,,

"I;Iorizontal nozzle SE =iV, — V|~)
with one entrance : 2z z.
and one exit




4.6 Momentum Equation
4.6.2 Steady Uniform Flow

To determine the x-component of the force of the joint on the
nozzle:

2F =m(V, — V)

2F, = ~(F)jm T 014 =—mV,  As(Vy)=Viand (V3),=0

joint

—"l: """"""""
Horizontal nozzle
with one entrance

and one exit



Continuity

d .
0=2 d¥ + j' V.hdA
dt .L..p ;...p "

- J' pV-adA

4.7 Summary

Energy

General Form

. d y?
— e — r.a dV
o dl..:,.,( 2 TE ]p

+J' (VT +L +gz)pV-ﬁdA + losses

Steady Flow

—IW =J [VT + -g +g:)pV-|‘|dA + losses

Momentum

IF = % J' pVd¥ + J' pV(V-0)dA

1‘,[-‘=j pV(V-h)dA



4.8 Summary

Steady Nonuniform Form'
i — . -3 W v Z o -
m = p, AV, = p, AV, — = a,=— + By - By LE =m(BV: — BV..)
mg 26 M 2g N _ _
}:F, =""(BxVx, _BIVI,)
Steady Uniform Form'
1 3 2 2
m=p AV =p, AV, -2_—W=V—’+-L!+:,-V—'--&—:,+h,_ IF =nm(V, —=V,)
mg gy 22y
Steady Uniform Incompressible Flow'
; 2 2 2
0 = AV, = A¥; L A XF = (V — V)
mg 2¢ 7 2¢ 7

2 2
H +‘2,—'+ﬂ+:,=H,+V—’+-&+z,+hL
g 7 2¢ 7Y

(]

i = mass flux a = kinetic energy correction factor h; = head loss

Q = flow rate j.l:d_A IW =W, + W + W,

V = average velocity - H, = pump head = W, /g
J’ VdA B = momentum correction factor H; = turbine head = W /g

A !V’dA
T Vi

"The control volume has one entrance (section 1) and one exit (section 2).



