PROBLEMS FOR CHAPTER 1

1-1

A sphere 1.4 cm in diameter is placed in a freestream of 18 m/s at 20°C and 1 atm. Compute the diameter Reynolds number of the sphere if the fluid is (a) air, (b) water and (c) hydrogen.

1-2

A telephone wire 8 mm in diameter is subjected to a crossflow wind and begins to shed vortices. From figure, what wind velocity in m/s will cause the wire to "sing" at middle C (or 256 Hz)?

1-3

If the wire in Problem 1-2 is subjected to a crossflow wind of 12 m/s, use Figure 1-9 to estimate its drag force (in N/m)

1-4

For oil flow in a pipe far downstream of the entrance (Figure 1-10 and 1-11), the axial velocity profile is a function of r only and is given by:

$$u = \left(\frac{C}{\mu}\right)(R^2 - r^2)$$

where *C* is a constant and *R* is the pipe radius. Suppose the pipe 1 cm in diameter and u_{max} is 30 m/s. Compute the wall shear stress in Pa if μ =0.3 kg/m.s.

1-5

A tornado may be simulated as two-part circulating flow in cylindrical coordinates, with:

$$v_r = v_z = 0$$

$$v_{\theta} = r\omega$$
 if $r \le R$
 $v_{\theta} = \frac{\omega R^2}{r}$ if $r > R$

Determine:

(a) the vorticity and

(b) the strain rates in each part of the flow.

1-7

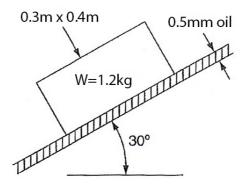
A two-dimensional unsteady flow has the velocity components:

$$u = \frac{x}{1+t} \qquad \qquad v = \frac{y}{1+2t}$$

Find the equation of the streamlines of this flow which pass through the point (x_0, y_0) at time t = 0.

1-8

Using Eq.(1-2) for inviscid flow past a cylinder, consider the flow along the streamline approaching the forward stagnation point $(r, \theta) = (R, \pi)$. Compute (a) the distribution of strain rates ϵ_{rr} and $\epsilon_{r\theta}$ along this streamline and (b) the time required for a particle to move from the point $(2R, \pi)$ to the stagnation point.


$$\frac{p}{p_0} \approx (A+1) \left(\frac{\rho}{\rho_0}\right)^n - A$$

where $A \approx 3000$, $n \approx 7$, $p_0 \approx 1 atm$, $\rho_0 \approx 998 kg/m^3$. From this formula, compute (a) the pressure (in atm) required to double the density of water, (b) the bulk modulus of water at 1 atm, and (c) the speed of sound in water at 1 atm.

1-10

As shown below, a 0.3×0.4 (m²) plate slides down a long 30° incline on which there is a film of oil 0.5 mm thick with viscosity μ =0.1 kg/m.s. Assuming that the plate does not deform the oil film, estimate:

- (a) The terminal sliding velocity (in m/s)
- (b) The time required for the plate to accelerate from rest to 99% of the terminal velocity.

1-11

Estimate the viscosity of nitrogen at 86 MPa and 49°C and compare with the measured value of 45 $\mu Pa.s.$

(86 MPa is high pressure, cannot use "low-density" method)

Substance	Molecular weight	T_c , °R	p_c , atm	$\mu_{c}, \mu Pa \cdot s$	$k_c, \mathbf{mW}/(\mathbf{m} \cdot \mathbf{K})$
Substance	weight	1 _c , K	P_c , and	$\mu_c, \mu_l a s$	$\mathbf{x}_{c}, \mathbf{m} \mathbf{v}_{l} (\mathbf{m} \mathbf{x})$
H ₂	2.016	60.0	12.8	3.47	90.0
He	4.003	9.47	2.26	2.54	20.8
Ar	39.944	272	48.0	26.4	29.8
Air	28.97 [†]	238 ⁺	36.4*	19.3 [*]	38.1*
CO ₂	44.01	548	72.9	34.3	51.1
co	28.01	239	34.5	19.0	36.2
N ₂	28.02	227	33.5	18.0	36.3
0 ₂	32.00	278	49.7	25.0	44.1
NO	30.01	324	64	25.8	49.5
N ₂ O	44.02	557	71.7	33.2	54.9
Cl ₂	70.91	751	76.1	42.0	40.7
CH ₄	16.04	343	45.8	15.9	66.1

TABLE A-5 Critical-point constants for common fluids

[†] Values for air are pseudocritical properties computed for the average composition of sea-level dry air.

Temp. <i>T</i> , ℃	Density ρ, kg/m³	Specific Heat c _p J/kg·K	Thermal Conductivity k, W/m-K	Thermal Diffusivity α, m ² /s	Dynamic Viscosity µ, kg/m⋅s	Kinematic Viscosity µ, m²/s	Prandtl Number Pr
-150 -100 -50 -40 -30	2.866 2.038 1.582 1.514 1.451	983 966 999 1002 1004	0.01171 0.01582 0.01979 0.02057 0.02134	$\begin{array}{c} 4.158 \times 10^{-6} \\ 8.036 \times 10^{-6} \\ 1.252 \times 10^{-5} \\ 1.356 \times 10^{-5} \\ 1.465 \times 10^{-5} \end{array}$	$\begin{array}{c} 8.636 \times 10^{-6} \\ 1.189 \times 10^{-6} \\ 1.474 \times 10^{-5} \\ 1.527 \times 10^{-5} \\ 1.579 \times 10^{-5} \end{array}$	$\begin{array}{c} 3.013 \times 10^{-6} \\ 5.837 \times 10^{-6} \\ 9.319 \times 10^{-6} \\ 1.008 \times 10^{-5} \\ 1.087 \times 10^{-5} \end{array}$	0.7246 0.7263 0.7440 0.7436 0.7425
-20 -10 0 5 10	1.394 1.341 1.292 1.269 1.246	1005 1006 1006 1006 1006	0.02211 0.02288 0.02364 0.02401 0.02439	$\begin{array}{c} 1.578\times10^{-5}\\ 1.696\times10^{-5}\\ 1.818\times10^{-5}\\ 1.880\times10^{-5}\\ 1.944\times10^{-5} \end{array}$	$\begin{array}{c} 1.630 \times 10^{-5} \\ 1.680 \times 10^{-5} \\ 1.729 \times 10^{-5} \\ 1.754 \times 10^{-5} \\ 1.778 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.169 \times 10^{-5} \\ 1.252 \times 10^{-5} \\ 1.338 \times 10^{-5} \\ 1.382 \times 10^{-5} \\ 1.426 \times 10^{-5} \end{array}$	0.7408 0.7387 0.7362 0.7350 0.7336
15 20 25 30 35	1.225 1.204 1.184 1.164 1.145	1007 1007 1007 1007 1007	0.02476 0.02514 0.02551 0.02588 0.02625	$\begin{array}{c} 2.009 \times 10^{-5} \\ 2.074 \times 10^{-5} \\ 2.141 \times 10^{-5} \\ 2.208 \times 10^{-5} \\ 2.277 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.802 \times 10^{-5} \\ 1.825 \times 10^{-5} \\ 1.849 \times 10^{-5} \\ 1.872 \times 10^{-5} \\ 1.895 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.470 \times 10^{-5} \\ 1.516 \times 10^{-5} \\ 1.562 \times 10^{-5} \\ 1.608 \times 10^{-5} \\ 1.655 \times 10^{-5} \end{array}$	0.7323 0.7309 0.7296 0.7282 0.7268
40 45 50 60 70	1.127 1.109 1.092 1.059 1.028	1007 1007 1007 1007 1007	0.02662 0.02699 0.02735 0.02808 0.02881	$\begin{array}{c} 2.346 \times 10^{-5} \\ 2.416 \times 10^{-5} \\ 2.487 \times 10^{-5} \\ 2.632 \times 10^{-5} \\ 2.780 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.918 \times 10^{-5} \\ 1.941 \times 10^{-5} \\ 1.963 \times 10^{-5} \\ 2.008 \times 10^{-5} \\ 2.052 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.702 \times 10^{-5} \\ 1.750 \times 10^{-5} \\ 1.798 \times 10^{-5} \\ 1.896 \times 10^{-5} \\ 1.995 \times 10^{-5} \end{array}$	0.7255 0.7241 0.7228 0.7202 0.7177
80 90 100 120 140	0.9994 0.9718 0.9458 0.8977 0.8542	1008 1008 1009 1011 1013	0.02953 0.03024 0.03095 0.03235 0.03374	$\begin{array}{c} 2.931 \times 10^{-5} \\ 3.086 \times 10^{-5} \\ 3.243 \times 10^{-5} \\ 3.565 \times 10^{-5} \\ 3.898 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.096 \times 10^{-5} \\ 2.139 \times 10^{-5} \\ 2.181 \times 10^{-5} \\ 2.264 \times 10^{-5} \\ 2.345 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.097 \times 10^{-5} \\ 2.201 \times 10^{-5} \\ 2.306 \times 10^{-5} \\ 2.522 \times 10^{-5} \\ 2.745 \times 10^{-5} \end{array}$	0.7154 0.7132 0.7111 0.7073 0.7041
160 180 200 250 300	0.8148 0.7788 0.7459 0.6746 0.6158	1016 1019 1023 1033 1044	0.03511 0.03646 0.03779 0.04104 0.04418	$\begin{array}{c} 4.241 \times 10^{-5} \\ 4.593 \times 10^{-5} \\ 4.954 \times 10^{-5} \\ 5.890 \times 10^{-5} \\ 6.871 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.420 \times 10^{-5} \\ 2.504 \times 10^{-5} \\ 2.577 \times 10^{-5} \\ 2.760 \times 10^{-5} \\ 2.934 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.975 \times 10^{-5} \\ 3.212 \times 10^{-5} \\ 3.455 \times 10^{-5} \\ 4.091 \times 10^{-5} \\ 4.765 \times 10^{-5} \end{array}$	0.7014 0.6992 0.6974 0.6946 0.6935
350 400 450 500 600	0.5664 0.5243 0.4880 0.4565 0.4042	1056 1069 1081 1093 1115	0.04721 0.05015 0.05298 0.05572 0.06093	$\begin{array}{c} 7.892 \times 10^{-5} \\ 8.951 \times 10^{-5} \\ 1.004 \times 10^{-4} \\ 1.117 \times 10^{-4} \\ 1.352 \times 10^{-4} \end{array}$	$\begin{array}{c} 3.101 \times 10^{-5} \\ 3.261 \times 10^{-5} \\ 3.415 \times 10^{-5} \\ 3.563 \times 10^{-5} \\ 3.846 \times 10^{-5} \end{array}$	$\begin{array}{c} 5.475 \times 10^{-5} \\ 6.219 \times 10^{-5} \\ 6.997 \times 10^{-5} \\ 7.806 \times 10^{-5} \\ 9.515 \times 10^{-5} \end{array}$	0.6937 0.6948 0.6965 0.6986 0.7037
700 800 900 1000 1500 2000	0.3627 0.3289 0.3008 0.2772 0.1990 0.1553	1135 1153 1169 1184 1234 1264	0.06581 0.07037 0.07465 0.07868 0.09599 0.11113	$\begin{array}{c} 1.598 \times 10^{-4} \\ 1.855 \times 10^{-4} \\ 2.122 \times 10^{-4} \\ 2.398 \times 10^{-4} \\ 3.908 \times 10^{-4} \\ 5.664 \times 10^{-4} \end{array}$	$\begin{array}{l} 4.111 \times 10^{-5} \\ 4.362 \times 10^{-5} \\ 4.600 \times 10^{-5} \\ 4.826 \times 10^{-5} \\ 5.817 \times 10^{-5} \\ 6.630 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.133 \times 10^{-4} \\ 1.326 \times 10^{-4} \\ 1.529 \times 10^{-4} \\ 1.741 \times 10^{-4} \\ 2.922 \times 10^{-4} \\ 4.270 \times 10^{-4} \end{array}$	0.7092 0.7149 0.7206 0.7260 0.7478 0.7539

Table A-9 Properties of air at 1 atm pressure

Note: For ideal gases, the properties *cp*, *k*, μ , and Pr are independent of pressure. The properties r, n, and a at a pressure *P* (in atm) other than 1 atm are determined by multiplying the values of *v* at the given temperature by *P* and by dividing n and a by *P*.

It is desired to form a gas mixture of 23% CO_2 , 14% O_2 and 63% N_2 at 1 atm and 20°C. Estimate the viscosity and thermal conductivity of this mixture.

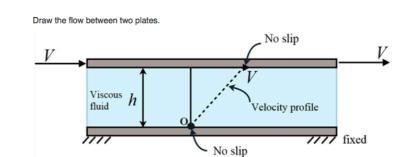
Constituent	Mole fraction (x)	μ (Pa.s)	K (W/m.K)
CO ₂ (44)	0.23	1.37×10^{-5}	0.0146
02(32)	0.14	1.92×10^{-5}	0.0244
N ₂ (28)	0.63	$1.66 imes 10^{-5}$	0.0242

The constituent properties are as follows:

1-14

Some measured values for the viscosity of ammonia gas are as follows:

Temp (K)	300	400	500	600	700	800
μ (Pa.s)	1.03×10^{-5}	1.39×10^{-5}	1.76 × 10 ⁻⁵	$2.10 imes 10^{-5}$	$2.51 imes 10^{-5}$	$2.88 imes 10^{-5}$

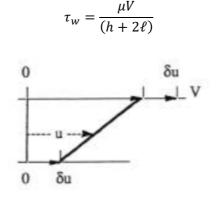

1-15

Analyze the flow between to plates of Figure 1-15 by assuming the fluid is a de Waele power-law fluid as in Eq. 1-31a.

Compute:

(a) The velocity profile u(y) with the power n as a parameter

(b) The velocity at the midpoint h/2 for n=0.5, 1.0 and 2.0



1-16

Repeat the analysis of the velocity profile between two plates (Figure 1-15) for a Newtonian fluid but allow for a slip velocity δu at both walls. Compute the shear stress at both walls. The slip velocity is:

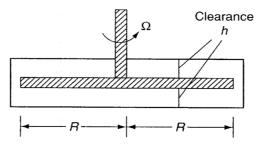
$$\delta u \approx \ell \left(\frac{du}{dy} \right)$$

and shear stress at top wall is

1-19

From the previous problem, if the temperature, sphere size and velocity remain the same for airflow, at what air pressure will the Reynolds number be equal to 10,000.

1-20

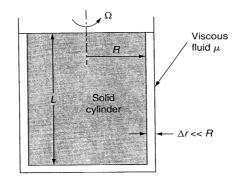

A solid cylinder of mass m, radius R and length L, falls concentrically through a vertical tube of radius $R+\Delta R$, where $\Delta R \ll R$. The tubes is filled with gas of viscosity μ and mean free path ℓ . Neglect fluid forces on the front and back faces of the cylinder and consider only shear stress in the annular region, assuming a linear velocity profile. Find an analytical expression for the terminal velocity of fall, V, of the cylinder (a) for no slip, (b) with slip (Eq.1-91).

1-21

Oxygen at 20°C and approximately 1200 Pa(abs) flows through a 35 μ m diameter smooth capillary tube at an average velocity of 10 cm/s. Estimate the Knudsen number of the flow and whether slip flow will be important.

1-22

A disk rotates steadily inside a disk-shaped container filled with oil of viscosity μ . Assume linear velocity profiles with no slip and neglect stress on the outer edges of the disk. Find a formula for the torque M required to drive the disk.


1-23

Show from Eq.1-86, that the coefficient of thermal expansion of a perfect gas is given by $\beta = \frac{1}{T}$. Use this approximation to estimate β of ammonia gas (NH₃) at 20°C and 1 atm and compare with the accepted value from a data reference.

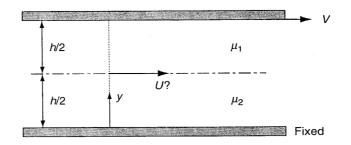
Prop		11												
darrow in the local division of	erties of	satura	ated am	monia										
Temp. T, °C	Saturation Pressure P, kPa	ρ,	ensity kg/m³ 、	Enthalpy of Vaporizatio	н с _р , .		Conc k, V	nermal Juctivity V/m - K	Dynamic μ, kg/		Nu	andti mber Pr	Volume Expansion Coefficient β, I/K	Surfac Tensior
-	State of the owner	No. of Concession, Name		h _{tg} , kJ/kg	Liqui	d Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-40	71.66	690.2 677.8	0.6435			2242	ALC: No.		2.926×10^{-4}	7.957 × 10 ⁻⁶	11-12	0.9955	0.00176	0.03565
-25	151.5	671.5	1.037	1360		2322		0.01898		8.311 × 10 ⁻⁶	10-20-10-20	1.017	0.00185	0.03341
-20	190.1	665.1	1.603	1345	4489	2369	0.5968	0.01957	2.492 × 10 +	8.490 × 10 ⁻⁶	1.875	1.028	0.00190	0.03229
-15	236.2	658.6	1.966	1329 1313					2.361 × 10 1	8.669 × 10 ⁻⁶	1.821	1.041	0.00194	0.03118
-10	290.8	652.1	2.391	1297	4538	24/6	0.5/3/	0.02075	2.236 × 10 4	8.851 × 10 ⁻⁶	1.769	1.056	0.00199	0.03007
-5	354.9	645.4	2.886	1280	4589				2.117 × 10-4	9.034 × 10 °	1.718	1.072	0.00205	0.02896
0	429.6	638.6	3.458	1262	4617				2.003 × 10 ⁻⁴ 1.896 × 10 ⁻⁴	9.218 × 10 -6	1.670	1.089	0.00210	0.02786
5	516	631.7	4.116	1202	4645				1.896×10^{-4} 1.794×10^{-4}		1.624	1.107	0.00216	0.02676
10	615.3	624.6	4.870	1244					1.794×10^{-4} 1.697×10^{-4}	9.593 × 10 ⁻⁶	1.580	1.126	0.00223	0.02566
	728.8	617.5	5.729	1206	4709				1.606 × 10 4	9.784 × 10 ⁻⁶ 9.978 × 10 ⁻⁶	.1.539	1.147		0.02457
20		610.2	6.705		4745				1.519 × 10 4	1.017 × 10 5	1.463	1.169	0.00237	0.02348
	1003	602.8	7.809	1166	4784				1.438 × 10 4	1.037 × 10 5	1.403	1.193	0.00245	0.02240
	1167	595.2	9.055	1144	4828				1.361 × 10 4	1.057 × 10 °	1.399	1.244	0.00264	0.02132
	1351		10.46	1122	4877				1.288 × 10 4	1.078 × 10-5	1.372	1.272	0.00275	0.01917
	1555 .	579.4			4932				1.219 × 10 4	1.099 × 10 °	1.347	1.303	0.00287	0.01810
	1782	571.3			4993				1.155×10^{-4}	1.121 × 10 5		1.335	0.00301	0.01704
	2033	562.9		:1051	5063	3790	0.4232	0.03162	1.094×10^{-4}	1.143 × 10 °	1.310	1.371		0.01598
	2310	554.2			5143				1.037 × 10 4	1.166 × 10 °	1.297	1.409		0.01493
60	2614	545.2			5234	4163	0.4001	0.03412	9.846 × 10 5	1.189 × 10 °	1.288	1.452		0.01389
	2948	536.0	23.26		5340	4384	0.3885	0.03550	9.347 × 10 °	1.213 × 10 *		1.499		0.01285
70	3312	526.3	26.39	939.0	5463	4634	0.3769	0.03700	8.879 × 10 5	1.238 × 10 °	1.287	1.551	0.00404	0.01181
75	3709	516.2	29.90	907.5	FEDR	1023	0 3653	0.03862	8 440 - 10 5	1.264 × 10 2	1 205	1.612	0.00436	0.01079

The rotating-cylinder viscometer shears the fluid in a narrow clearance Δr , as shown. Assuming a linear velocity distribution in the gaps, if the driving torque M is measured, find an expression for μ by (a) neglecting the bottom friction and (b) including the bottom friction.

1-25

Consider 1 m³ of a fluid at 20°C and 1 atm. For an isothermal process, calculate the final density and the energy, in joules, required to compress the fluid until the pressure is 10 atm, for (a) air and (b) water. Discuss the difference in results.

TABLE A-1			
Properties of	saturated	water at	t atmospheric pressure


Temperature <i>T</i> , °C	Density ρ , kg/m ³	Viscosity μ , mPa · s	Surface tension ‡ \mathcal{T} , N/m	Vapor pressure p _v , kPa	Bulk modulus K, MPa
0	1000	1.792	0.0757	0.61	2062
20	998	1.002	0.0727	2.34	2230
40	992	0.653	0.0696	7.38	2304
60	983	0.467	0.0662	19.92	2301
80	972	0.355	0.0627	47.35	2235
100	958	0.282	0.0589	101.3	2120
150	915	0.182	0.0488	461	1692
200	863	0.136	0.0377	1580	1190
250	797	0.107	0.0261	3970	716
300	707	0.086	0.0144	8560	342
350	487	0.068	0.0038	16,500	82
374 *	315	0.019	0.0	22,100	0

[†]Critical point.

* In contact with air.

Equal layers of two immiscible fluids are being sheared between a moving and a fixed plate. Assuming linear velocity profiles, find an expression for the interface velocity U as a function of V, μ_1 and μ_2 .

1-27

Use the inviscid-flow solution of flow past a cylinder, Eq.1-3, to:

- (a) Find the location and value of the maximum fluid acceleration along the cylinder surface. Is your result valid for gases and liquids?
- (b) Apply your formula for a_{max} to airflow at 10 m/s past a cylinder of diameter 1 cm and express your result as a ratio compared to the acceleration of gravity. Discuss what your result implies about the ability of fluids to withstand acceleration.