
CHAPTER	3	
SOLUTIONS	OF	THE	NEWTONIAN	VISCOUS	FLOW	EQUATIONS	
	
SURFACE	RESISTANCE	WITH	UNIFORM	LAMINAR	FLOW	
(COUETTE	FLOW)	
	
In	this	section,	we	consider	three	two-dimensional	laminar	flows	with	parallel	stream	lines.	
The	flows	are	steady	and	uniform;	that	is,	there	is	no	change	in	velocity	along	a	stream	line.	
Using	the	momentum	equation,	we	will	first	derive	a	general	equation	for	the	flow	velocity	
and	then	apply	it	to	three	specific	problem.	
	
1. Flow	produced	by	a	moving	plate	
2. Liquid	flow	down	an	inclined	plane	
3. Flow	between	two	stationary	parallel	plate	

	
	
	 	



	
	
Consider	the	control	volume	as	shown	above,	which	aligned	with	the	flow	in	direction	s.	The	
streamlines	are	 inclined	at	an	angle	 	𝜃		with	respect	 to	 the	horizontal	plane.	The	control	
volume	has	dimension		∆𝑠	×	∆𝑦	×	𝑢𝑛𝑖𝑡𝑦		;	that	is,	the	control	volume	has	a	unit	length	into	
the	screen.	
	
By	application	of	the	momentum	equation,	the	sum	of	the	forces	acting	in	the	s-direction	is	
equal	to	the	net	outflow	of	momentum	from	the	control	volume.	
	 	



The	flow	is	uniform,	so	that	outflow	of	momentum	is	equal	to	the	in-flow	and	the	momentum	
equation	reduces	to	
	

𝐹_ = 0	
	
There	are	three	forces	acting	on	the	matter	in	the	control	volume:	the	forces	due	to	pressure,	
shear	stress	and	gravity.	
	
The	net	pressure	force	is:	
	

𝑝∆𝑦 − 𝑝 +
𝑑𝑝
𝑑𝑠
∆𝑠 ∆𝑦 = −

𝑑𝑝
𝑑𝑠
∆𝑠∆𝑦	

	
	
The	net	force	due	to	shear	stress	is:	
	

𝜏 +
𝑑𝜏
𝑑𝑦

∆𝑦 ∆𝑠 − 𝜏∆𝑠 =
𝑑𝜏
𝑑𝑦

∆𝑦∆𝑠	

	
	 	



The	component	of	gravitational	force	is		𝜌𝑔∆𝑠∆𝑦 sin 𝜃		.	However,		sin 𝜃		can	be	related	to	
the	rate	at	which	the	elevation,		𝑧		,	decreases	with	increasing		𝑠		and	is	given	by		− kl

k_
		.	

	
Thus,	the	gravitational	force	becomes:	
	

𝜌𝑔∆𝑠∆𝑦 sin 𝜃 = −𝜌𝑔∆𝑠∆𝑦
𝑑𝑧
𝑑𝑠

	
	
Summing	all	forces	to	zero	and	dividing	through	by		∆𝑠∆𝑦		results	in:	
	

𝑑𝜏
𝑑𝑦

=
𝑑
𝑑𝑠

𝑝 + 𝜌𝑔𝑧 =
𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 	

	
where	we	note	that	the	gradient	of	the	shear	stress	is	equal	to	the	change	in	piezometric	
pressure	in	the	flow	direction.	The	shear	stress	is	equal	to		𝜇 ko

kp
		,	so	the	equation	becomes:	

𝑑q𝑢
𝑑𝑦q

=
1
𝜇
𝑑
𝑑𝑠

𝑝 + 𝜌𝑔𝑧 =
1
𝜇
𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 	 (1)	

We	will	apply	this	equation	to	three	flow	configurations.	
	 	



FLOW	PRODUCED	BY	MOVING	PLATE	
	
Consider	the	flow	between	the	two	plates	as	shown	below.	The	lower	plate	is	fixed	and	the	
upper	plate	 is	moving	with	a	speed	 	𝑈.	The	plates	are	separated	by	a	distance	 	𝐿.	 In	 this	
situation,	there	is	no	pressure	gradient	in	the	flow	direction		 kx

k_
= 0 		and	the	stream	lines	

are	in	the	horizontal	direction		 kl
k_
= 0 			

	
Eq.(1)	can	be	written	as:	
	

𝑑q𝑢
𝑑𝑦q

= 0	

	 	



The	two	boundary	conditions	are:	
𝑢 = 0					at							𝑦 = 0	

	
𝑢 = 𝑈					at							𝑦 = 𝐿	

	
Integrating	this	equation	twice	gives:	
	

𝑢 = 𝐶z𝑦 + 𝐶q	
	
Applying	the	boundary	conditions	gives:	
	

𝑢 = 𝑈
𝑦
𝐿
	

	
which	 shows	 that	 the	 velocity	 profile	 is	 linear	 between	 two	 plates.	 The	 shear	 stress	 is	
constant	and	equal	to:	
	

𝜏 = 𝜇
𝑑𝑢
𝑑𝑦

= 𝜇
𝑈
𝐿
	

	
This	flow	is	known	as	a	Couette	flow	after	a	French	scientist,	M.	Couette,	who	did	pioneering	
work	on	the	flow	between	parallel	plates	and	rotating	cylinders.	



Example:	
If	the	fluid	between	the	plates	is	SAE	30	lubricating	oil	at		𝑇 = 38℃		,	the	plates	are	spaced	
0.3mm	apart,	the	upper	plate	is	moved	at	a	velocity	of	1.0m/s,	what	is	the	surface	
resistance	for	1.0m2	of	the	upper	plate?	
	

𝜏 = 𝜇
𝑑𝑢
𝑑𝑦

= 𝜇
𝑈
𝐿

= 0.1
1

0.0003
= 333	 𝑁/𝑚q 	

	
𝐹 = 𝜏𝐴 = 333		𝑁	

	
	
	 	



LIQUID	FLOW	DOWN	AN	INCLINED	PLANE	
	
Consider	the	 flow	down	an	 inclined	plane	as	shown	below.	The	 liquid	 layer,	which	has	a	
depth		𝑑		,	has	a	free	surface	where	the	pressure	is	constant,	so	along	the	surface		 kx

k_
= 0 .	

	

	
	
The	pressure	is	hydrostatic	across	any	section	in	the	z-direction	but	does	not	change	in	the	
stream	line	direction.	The	shear	stress	at	the	free	surface	between	the	air	and	liquid	is	small	
and	therefore	neglected.	
	
	 	



In	 this	 section,	 the	 gravitational	 force	 is	 balanced	 by	 the	 shear	 stress.	 The	 differential	
equation,	Eq.(1),	reduces	to:	
	

𝑑q𝑢
𝑑𝑦q

=
1
𝜇
𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 = −
𝛾
𝜇
sin 𝜃	

	
The	boundary	conditions	are:	

𝑢 = 0					at							𝑦 = 0	
	

ko
kp
= 0					at							𝑦 = 𝑑	

	
Integrating	this	equation	once	gives:	
	

𝑑𝑢
𝑑𝑦

= −𝑦
𝛾
𝜇
sin 𝜃 + 𝐶	

	
Applying	boundary	conditions	at		𝑦 = 𝑑		shows:	
	

𝐶 =
𝛾𝑑
𝜇

sin 𝜃	

	 	



The	equation	becomes:	
𝑑𝑢
𝑑𝑦

=
𝛾
𝜇
sin 𝜃 𝑑 − 𝑦 	

	
Integrating	the	second	time	results	in:	
	

𝑢 =
𝛾
𝜇
sin 𝜃 𝑦𝑑 −

𝑦q

2
+ 𝐶	

	
and	the	constant	of	integration	is	set	equal	to	zero	to	satisfy	the		
boundary	condition	at			𝑦 = 0	
	
This	equation	can	be	written	as:	
	

𝑢 =
𝛾 sin 𝜃
2𝜇

2𝑦𝑑 − 𝑦q =
𝑔 sin 𝜃
2𝜐

2𝑦𝑑 − 𝑦q 	

	
𝜐 = kinematic	viscosity	
𝜇 = dynamic	viscosity	

	
	 	



The	resulting	profile	is	a	parabola	with	maximum	velocity	occurring	at	the	free	surface.	The	
maximum	velocity	is:	
	

𝑢��� =
𝛾𝑑q

2𝜇
sin 𝜃	

	
The	discharge	per	unit	width	can	be	obtained	by	integrating	the	velocity		𝑢		over	the	depth	
of	flow:	
	

𝑞 = 𝑢 ∙ 𝑑𝑦 =
k

�

𝛾 sin 𝜃
2𝜇

𝑑𝑦q −
𝑦�

3 �

k

=
1
3
𝛾 sin 𝜃
𝜇

𝑑�	

	
The	average	velocity,		𝑉,		can	be	obtained	by:	
	

𝑉 =
𝑞
𝑑
=
1
3
𝛾 sin 𝜃
𝜇

𝑑q =
𝑔𝑑q

3𝜐
sin 𝜃	

	
𝑑 = cross	sectional	area	

𝑞 = discharge	
	 	



The	 slope,	 	𝑆� = tan 𝜃 	,	 is	 approximately	 equal	 to	 	sin 𝜃 		 for	 a	 small	 slopes.	 Sometimes,	
equation	for	velocity	can	be	written	as:	
	

𝑉 =
𝑔𝑑q𝑆�
3𝜐

	
	
Experiments	have	shown	that	if	Reynolds	number	based	on	the	depth	of	the	flow,	

𝑅𝑒 =
𝜌𝑉𝑑
𝜇

=
𝑉𝑑
𝜐
	

	
is	 less	than	500,	one	can	expect	 laminar	flow	in	this	situation.	 If	 the	Reynolds	number	 is	
greater	than	500,	the	flow	become	turbulent	and	the	results	of	this	section	are	no	longer	
valid.	
	
	 	



Example:	
Crude	oil,	𝜐 = 9.3×10��		m2/s,		𝑆𝐺 = 0.92,	flows	over	a	flat	plate	that	has	a	slope	of		
𝑆� = 0.02	.	 If	 the	 depth	 of	 flow	 is	 6mm,	what	 is	 the	maximum	 velocity	 and	what	 is	 the	
discharge	per	meter	of	width	of	plate?	Determine	the	Reynolds	number	for	this	flow.	
	

𝑢 =
𝑔𝑆�
2𝜐

2𝑦𝑑 − 𝑦q 	
	
At		𝑦 = 𝑑		;				𝑢��� = 0.038			𝑚/𝑠	
	
Discharge	per	meter	of	width	is:	
	

𝑞 =
1
3
𝛾 sin 𝜃
𝜇

𝑑� =
𝑔𝑆�𝑑�

3𝜐
= 1.52×10��			𝑚q/𝑠	

	
Reynolds	number:	

𝑅𝑒 =
𝑉𝑑
𝜐
= 1.63	

	
(The	flow	is	laminar)	

	 	



FLOW	BETWEEN	STATIONARY	PARALLEL	PLATES	
	
Consider	the	two	parallel	plates	separated	by	a	distance	B	as	shown	below.	

	
	
In	this	situation,	the	flow	velocity	is	zero	at	the	surface	for	both	plates.	The	boundary	
conditions	become:	
	

𝑢 = 0					at							𝑦 = 0	
	

𝑢 = 0					at							𝑦 = 𝐵	
	 	



The	gradient	in	piezometric	pressure	is	constant	along	the	stream	line.	Integrating	Eq.(1)	
twice	gives:	
	

𝑢 =
𝑦q

2𝜇
𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 + 𝐶z𝑦 + 𝐶q	

	
To	satisfy	the	boundary	condition	at		𝑦 = 0	,	we	need	to	set		𝐶q = 0	.	Applying	the	
boundary	condition	at		𝑦 = 𝐵		requires	that		𝐶z		is:	
	

𝐶z = −
𝐵
2𝜇

𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 	

	
The	final	equation	for	the	velocity	is:	
	

𝑢 = −
1
2𝜇

𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 𝐵𝑦 − 𝑦q = −
𝛾
2𝜇

𝐵𝑦 − 𝑦q
𝑑ℎ
𝑑𝑠
	

	
	 	



which	is	parabolic	profile	with	the	maximum	velocity	occurring	on	the	centreline	between	
the	plates		 𝑦 = �

q
.	

	
The	maximum	velocity	is:	

𝑢��� = −
𝐵q

8𝜇
𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 	

	
or	in	terms	piezometric	head:	

𝑢��� = −
𝐵q𝛾
8𝜇

𝑑ℎ
𝑑𝑠
	

	
The	fluid	always	flows	in	the	direction	of	decreasing	piezometric	pressure	or	piezometric	
head,	so		k�

k_
		is	negative.		

	
This	giving	a	positive	value	for		𝑢���	.	
	
	
	 	



The	discharge	per	unit	width	can	be	find	by	integrating	the	velocity	over	the	distance	
between	plates:	
	

𝑞 = 𝑢 ∙ 𝑑𝑦 =
�

�
−

𝐵�

12𝜇
𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 = −
𝐵�

12𝜇
𝑑ℎ
𝑑𝑠
	

	
The	average	velocity	is:	

𝑉 =
𝑞
𝐵
= −

𝐵q

12𝜇
𝑑
𝑑𝑠

𝑝 + 𝛾𝑧 =
2
3
𝑢���	

	
As	was	the	case	with	unconfined	laminar	liquid	flow	over	a	plane	surface,	the	velocity	
distribution	is	parabolic.	However,	in	this	situation,	the	maximum	velocity	occurs	midway	
between	two	plates.	Note	that	flow	is	result	of	a	change	of	the	piezometric	head,	not	just	
change	of		𝑝		or		𝑧		alone.	
	
Experiments	reveal	that	if	Reynolds	number	is	less	than	1000,	the	flow	is	laminar.	For	
Reynolds	number	greater	than	1000,	the	flow	may	be	turbulent	and	the	equations	in	this	
section	invalid.	
	
	 	



Example:	
Oil	having	a	specific	gravity	of	0.8	and	a	viscosity	of	0.02	N.s/m2	flows	downward	between	
two	vertical	smooth	plates	spaced	10mm	apart.	If	the	discharge	per	meter	of	width	is	0.01	
m2/s,	what	is	the	pressure	gradient		kx

k_
		for	this	flow.	

	
Reynolds	number:	

𝑅𝑒 =
𝑉𝐵
𝜐
=
𝜌𝑉𝐵
𝜇

=
𝜌𝑞
𝜇
= 400	

(Flow	is	laminar)	
	

𝜐 =
𝜇
𝜌
= 0.000025			𝑚q/𝑠	

	
The	gradient	in	piezometric	head	can	be	written	as:	
	

𝑑ℎ
𝑑𝑠

= −
12𝜇𝑞
𝐵�𝛾

= −
12𝜐𝑞
𝐵�𝑔

= −0.306	

	
	 	



However,		
𝑑ℎ
𝑑𝑠

=
𝑑
𝑑𝑠

𝑝
𝛾
+ 𝑧 = −0.306	

	
Because	the	plates	are	vertically	oriented	and		𝑠		is	positive	downward,		kl

k_
= −1		,	

	
Thus,	

𝑑 𝑝
𝛾
𝑑𝑠

= 1 − 0.306	
	
or	
	

𝑑𝑝
𝑑𝑠

= 5447				𝑁/𝑚q	
	
In	the	other	word,	the	pressure	is	increasing	downward	at	a	rate	of	5.45	kPa	per	meter	of	
length	of	plate.	
	
	 	



FULLY	DEVELOPED	FLOW	BETWEEN	PARALLEL	PLATES	USING	NAVIER-STOKES	
EQUATIONS	
	
The	flow	field	between	parallel	plates	will	be	derived	here	using	the	continuity	and	Navier-
Stokes	equations.	Reference	is	made	to	above	mention	figure,	where	𝑦	is	the	coordinate	
normal	to	the	plates	and	𝑥	is	the	flow	direction	(same	as	𝑠-direction).	
	

	
	
The	flow	field	is	fully	developed	(uniform),	so	the	derivatives		 o

 �
		and		 ¡

 �
		are	zero.	

	
Also	the	flow	is	steady,	so		 o

 ¢
		and		 ¡

 ¢
		are	zero.	



	
The	component	of	the	gravity	vector	in	the	𝑥-direction	is		𝑔 sin 𝜃				and	
The	component	of	the	gravity	vector	in	the	𝑦-direction	is		−𝑔 cos 𝜃		.	
	
The	continuity	equation	for	planar	incompressible	flow	is:	
	

𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦

= 0	

	
Since		 o

 �
= 0		,	the	continuity	equation	reduces	to:	

	
𝜕𝑣
𝜕𝑦

= 0	

or	
𝑣 = constant	

	
At	the	surface	of	the	plate	(𝑦 = 0)	,		the	velocity	is	zero.	So,	

𝑣 = 0	
everywhere	in	the	flow	field.	
	
	 	



The	Navier-Stokes	equation	in	the	𝑦-direction	is:	
	

𝜌
𝜕𝑣
𝜕𝑡
+ 𝜌𝑢

𝜕𝑣
𝜕𝑥

+ 𝜌𝑣
𝜕𝑣
𝜕𝑦

= −
𝜕𝑝
𝜕𝑦

+ 𝜇
𝜕q𝑣
𝜕𝑥q

+
𝜕q𝑣
𝜕𝑦q

− 𝜌𝑔 cos 𝜃	

	
Because		𝑣		is	zero	everywhere,	there	is	no	acceleration	of	the	fluid	in	the	𝑦-direction,	so	
this	component	of	the	Navier-Stokes	equation	reduces	to:	
	

𝜕𝑝
𝜕𝑦

= −𝜌𝑔 cos 𝜃	

Integrating	over		𝑦		,	one	has	
	

𝑝 = −𝑦𝜌𝑔 cos 𝜃 + 𝑝p¥� 𝑥 	
	
where		𝑝p¥� 𝑥 		is	the	pressure	distribution	along	the	lower	wall.	This	equation	shows	that	
the	pressure	decreases	with	elevation	in	the	duct,	as	expected.	In	fact,		𝑦 cos 𝜃		is	equal	to	
𝑧	,	so	this	equation	can	be	written	as	the	equation	for	hydrostatic	pressure	variation,	
namely:	

𝜌 + 𝜌𝑔𝑧 = 𝑝p¥� 𝑥 	
	
	 	



The	pressure	gradient	in	the		𝑥-direction	is:	
	

𝜕𝑝
𝜕𝑥

=
𝜕𝑝p¥�
𝜕𝑥

=
𝑑𝑝
𝑑𝑥
	

	
and	is	the	same	for	all	values	of	𝑦	across	the	duct	for	any	value	of	𝑥.	
	
The	Navier-Stokes	equation	in	the	𝑥-direction	is:	
	

𝜌
𝜕𝑢
𝜕𝑡
+ 𝜌𝑢

𝜕𝑢
𝜕𝑥

+ 𝜌𝑣
𝜕𝑢
𝜕𝑦

= −
𝜕𝑝
𝜕𝑥

+ 𝜇
𝜕q𝑢
𝜕𝑥q

+
𝜕q𝑢
𝜕𝑦q

+ 𝜌𝑔 sin 𝜃	

For	steady,	fully	developed	flow	the	left-hand-side	of	this	equation	reduces	to	zero	(no	
acceleration	in	the	𝑥-direction),	and	the	equation	becomes:	
	

𝜕𝑝
𝜕𝑥

− 𝜌𝑔 sin 𝜃 = 	𝜇
𝜕q𝑢
𝜕𝑦q

	

	
	 	



Because		𝑢		is	a	function	of		𝑦		only		  o
 �
= 0 		and		 x

 �
		is	a	function	only	of		𝑥	,	this	equation	

becomes:=	
𝑑𝑝
𝑑𝑥

− 𝜌𝑔 sin 𝜃 = 	𝜇
𝑑q𝑢
𝑑𝑦q

	

	
The	slope	of	the	duct	can	be	expressed	as:	

sin 𝜃 = 	−
𝑑𝑧
𝑑𝑥
	

	
Previously,	we	know	that	:	
	

𝜇
𝑑q𝑢
𝑑𝑦q

=
𝑑𝑝
𝑑𝑥

− 𝜌𝑔 −
𝑑𝑧
𝑑𝑥

= 	
𝑑
𝑑𝑥

𝑝 + 𝜌𝑔𝑧 	

	
or	

𝜌𝑔
𝑑ℎ
𝑑𝑠

= 𝛾
𝑑ℎ
𝑑𝑠

= 𝜇
𝑑q𝑢
𝑑𝑦q

	

	
which	is	the	same	equation	as	used	in	the	previous	section	to	obtain	the	velocity	
distribution.	
	


