
CHAPTER	4	
LAMINAR	BOUNDARY	LAYER	
	
LIFT	AND	DRAG	FORCE	

	
	
Drag	force	=	 𝑑𝐹?	
	
Lift	force	=	 𝑑𝐹B	
	



Assume	there	is	an	inclined	plate	of		𝑑𝐴		and	a	fluid	flow	passes	it	with	velocity		𝑈	
	

	
	
	
(1)	
Due	to	the		𝑈		flow	velocity,	there	is	a	change	in	the	pressure	acting	on	the	plane	surface.	It	can	be	
described	according	to	Bernoulli's	law.	
There	is	a	pressure,	then	the	force	could	be	produced.	
	

𝐹 = 𝑃 ∙ 𝐴	
	
	
(2)	
The	airflow	also	causes	friction	due	to	fluid	viscosity,	and	this	also	causes	the	resulting	force.	
	

𝐹 = 𝜏 ∙ 𝐴	
	
	
	 	



Thus,	there	are	two	(2)	resulting	forces	and	it	can	be	summarized	as	follows:	
	

	
	 	



	

Drag	Force,	𝐹]	 = 𝑑 ∙ 𝐹 	

	 = 𝑃 ∙ 𝑐𝑜𝑠𝜃. 𝑑𝐴 + 𝜏 ∙ 𝑠𝑖𝑛𝜃. 𝑑𝐴	

	 	

Lift	Force,	𝐹f	 = 𝑑 ∙ 𝐹g	

	 = 𝑃 ∙ 𝑠𝑖𝑛𝜃. 𝑑𝐴 + 𝜏 ∙ 𝑐𝑜𝑠𝜃. 𝑑𝐴	

	
	 	



The	drag	force	and	lift	force	calculations	can	be	done	using	the	following	basic	formula:	
	

𝐹] = 𝐶] ∙
1
2
∙ 𝜌𝐴𝑈j	

	

𝐹f = 𝐶f ∙
1
2
∙ 𝜌𝐴𝑈j	

	
where;	
𝐹] = 	Drag	Force		
𝐹f = 	Lift	Force		
𝐶] = 	Coefficient	of	Drag		
𝐶f = 	Coefficient	of	Lift		
𝜌 = 	Density	of	fluid		
𝐴 = 	Area		
𝑈 = 	Velocity	of	fluid		
	
The	value	of	the	area,		𝐴		,	will	change	according	to	the	conditions	and	definitions.	
	 	



	
	
	
	
	

	
	

	 	



	

	
	 	



WHAT	IS	BOUNDARY	LAYER	
	
Boundary	layer,	in	fluid	mechanics,	thin	layer	of	a	flowing	gas	or	liquid	in	contact	with	a	surface	such	
as	that	of	an	airplane	wing	or	of	the	inside	of	a	pipe.	The	fluid	in	the	boundary	layer	is	subjected	to	
shearing	 forces.	 A	 range	 of	 velocities	 exists	 across	 the	 boundary	 layer	 from	maximum	 to	 zero,	
provided	the	fluid	is	in	contact	with	the	surface.	Boundary	layers	are	thinner	at	the	leading	edge	of	
an	aircraft	wing	and	thicker	toward	the	trailing	edge.	The	flow	in	such	boundary	layers	is	generally	
laminar	at	the	leading	or	upstream	portion	and	turbulent	in	the	trailing	or	downstream	portion.	
	

	
	 	



	
	

	
	
	 	



BOUNDARY	LAYER	THICKNESS,	𝛿	
	
Definition:	
A	distance	from	the	surface	where	the	local	velocity	equals	99%	of	the	free	stream	velocity,	𝑈.	
	

𝛿 = 𝑦(xyz.{{|)	
	
𝛿 = boundary	layer	thickness	
𝑦 = distance	in	𝑦-direction	
𝑢 = local	velocity	
𝑈 = free	stream	velocity	
	

	
	 	



DISPLACEMENT	THICKNESS,	𝛿∗	
	
Definition:	
	
The	distance	 the	surface	would	have	 to	move	 in	 the	y-direction	 to	 reduce	 the	 flow	passing	by	a	
volume	equivalent	to	the	real	effect	of	the	boundary	layer.	
	
It	is	written	as	delta-star,		𝛿∗	
	
Calculation	of	the	displacement	thickness	is	done	by	using	the	idea	of	conservation	of	mass.	
	
	 	



	
	
	

Density, 𝜌 =
Mass
Volume

=
𝑚
𝑉
	

	
𝑚	 = 𝜌𝑉		

	 = 𝜌×(length	×	height	×	width)	

	 = 𝜌×(𝑈	×	𝛿	×	1)	

	 = 𝜌𝑈𝛿	

	
	 	



Conservation	of	mass	
	

𝑚�	 = 𝑚� +𝑚�	

𝜌𝑈𝛿	 = 𝜌𝑢 ∙ 𝑑𝑦
�

z
+ 𝜌𝑈𝛿∗	

𝜌𝑈𝛿∗	 = 𝜌𝑈𝛿 − 𝜌𝑢 ∙ 𝑑𝑦
�

z
= 𝜌𝑈 − 𝜌𝑢 	𝑑𝑦

�

z
	

𝛿∗	 =
𝜌𝑈 − 𝜌𝑢 	
𝜌𝑈

𝑑𝑦
�

z
= 1 −

𝜌𝑢	
𝜌𝑈

𝑑𝑦
�

z
	

	 = 1 −
𝑢	
𝑈

𝑑𝑦
�

z
	

	
	 	



Therefore,	the	formula	for	determining	the	displacement	thickness	is:	
	

𝛿∗ = 1 −
𝑢	
𝑈

𝑑𝑦
�

z
	

	
𝛿∗ = displacement	thickness	
𝛿 = boundary	layer	thickness	
𝑢 = local	velocity	
𝑈 = free	stream	velocity	
	
	 	



MOMENTUM	THICKNESS,	𝜃	
	
Definition:	
	
The	distance	by	which	a	surface	would	have	to	be	moved	parallel	to	itself	towards	the	reference	
plane	in	an	inviscid	fluid	stream	of	velocity,	𝑢	to	give	the	same	total	momentum	as	exists	between	
the	surface	and	the	reference	plane	in	a	real	fluid.	
	
It	is	written	as	theta,		𝜃	
	
Calculation	of	the	momentum	thickness	is	done	by	using	the	idea	of	conservation	of	momentum.	
	
	 	



	

	
	

𝑚𝑉�� = 𝑚𝑉�x�	
	

	 Mass	 Velocity	

IN	 𝜌𝑈𝛿	 𝑈	

OUT	 𝜌𝑢 ∙ 𝑑𝑦
�

z
	 𝑢	

OUT	 𝜌𝑈𝛿∗	 𝑈	

OUT	 𝜌𝑈𝜃	 𝑈	

	
	 	



𝑚𝑉��	 = 𝑚𝑉�x�	 	

𝜌𝑈𝛿 ∙ 𝑈	 = 𝜌𝑢 ∙ 𝑢 ∙ 𝑑𝑦
�

z
+ 𝜌𝑈𝛿∗ ∙ 𝑈 + 𝜌𝑈𝜃 ∙ 𝑈	 	

𝜌𝑈j𝛿	 = 𝜌𝑢j ∙ 𝑑𝑦
�

z
+ 𝜌𝑈j𝛿∗ + 𝜌𝑈j𝜃	 	

It	is	known	that:	 𝛿∗ = 1 −
𝑢	
𝑈

𝑑𝑦
�

z
	 	

𝜌𝑈j𝛿	 = 𝜌𝑢j ∙ 𝑑𝑦
�

z
+ 𝜌𝑈j 1 −

𝑢	
𝑈

𝑑𝑦
�

z
+ 𝜌𝑈j𝜃	 	

	 = 𝜌𝑢j ∙ 𝑑𝑦
�

z
+ 𝜌𝑈j𝛿 − 𝜌𝑈𝑢 ∙ 𝑑𝑦

�

z
+ 𝜌𝑈j𝜃	 	

	
	 	



	

𝜌𝑈j𝜃	 = 𝜌𝑈j𝛿 − 𝜌𝑢j ∙ 𝑑𝑦
�

z
− 𝜌𝑈j𝛿 + 𝜌𝑈𝑢 ∙ 𝑑𝑦

�

z
	 	

𝜌𝑈j𝜃	 = 𝜌𝑈𝑢 ∙ 𝑑𝑦
�

z
− 𝜌𝑢j ∙ 𝑑𝑦

�

z
	 	

𝜃	 =
𝜌𝑈𝑢
𝜌𝑈j

∙ 𝑑𝑦
�

z
−

𝜌𝑢j

𝜌𝑈j
∙ 𝑑𝑦

�

z
	 	

	 =
𝑢
𝑈
∙ 𝑑𝑦

�

z
−

𝑢j

𝑈j
∙ 𝑑𝑦

�

z
	 	

	 =
𝑢
𝑈

1 −
𝑢
𝑈

𝑑𝑦
�

z
	 	

	
	
	
	
	
	 	



	
Therefore,	the	formula	for	determining	the	momentum	thickness	is:	
	

𝜃 =
𝑢
𝑈

1 −
𝑢
𝑈

𝑑𝑦
�

z
	

	
𝜃 = momentum	thickness	
𝛿 = boundary	layer	thickness	
𝑢 = local	velocity	
𝑈 = free	stream	velocity	
	
	
	 	



EXAMPLE	
	
Determine	the			�

∗

�
			and			�

�
			for	the	velocity	distribution	of			x

|
= g

�
	

	

𝛿∗	 = 1 −
𝑢	
𝑈

𝑑𝑦
�

z
= 1 −

𝑦
𝛿
𝑑𝑦

�

z
=
1
2
𝛿	

𝛿∗

𝛿
	 =

1
2
	

	 	

𝜃	 =
𝑢
𝑈

1 −
𝑢
𝑈

𝑑𝑦
�

z
=

𝑦
𝛿
	 1 −

𝑦
𝛿
	 𝑑𝑦

�

z
	

𝜃
𝛿
	 =

1
6
	

	
	 	



VON-KARMAN	EQUATION	
	
	
It	was	introduces	by	T.	Von	Karman	(1881	–	1963)	by	using	the	idea	of	conservation	of	momentum.	
	

	
	

Momentum	in	=	Momentum	out	
	
Momentum	can	be	calculated	as:	
	

Momentum = 𝑚	×	𝑉	
𝑚 = mass = 𝜌	×	(∀)	

𝑉 = Velocity	
∀ = Volume	

	
	
	 	



	
	
mass	of	the	shaded	area	is:	

𝑚 = 𝜌 𝑈 − 𝑢 𝐵 ∙ 𝑑𝑦	
	
Momentum	deficit,		𝑑		,	of	the	shaded	area	is:	
	

𝑑	 = 𝑚𝑉	
	 = 𝜌 𝑈 − 𝑢 𝐵 ∙ 𝑑𝑦 ∙ 𝑢	

	
	 	



	
Total	momentum	deficit,		D		is:	

𝐷	 = 𝜌𝐵 𝑢 𝑈 − 𝑢
�

z
∙ 𝑑𝑦 = 𝜌𝐵𝑈j

𝑢
𝑈

𝑈
𝑈
−
𝑢
𝑈

�

z
∙ 𝑑𝑦	 	

	 = 𝜌𝐵𝑈j
𝑢
𝑈

1 −
𝑢
𝑈

�

z
∙ 𝑑𝑦	 	

	 = 𝜌𝐵𝑈j𝜃	 Eq.(1)	

	
Differentiate	to		𝑑𝑥	 	

𝑑𝐷
𝑑𝑥
	 = 𝜌𝐵𝑈j

𝑑𝜃
𝑑𝑥
	 Eq.(2)	

Momentum	losses	also	can	be	count	as	a	friction:	
𝑑𝐷	 = 𝜏 ∙ 𝑑𝐴	 	

	 = 𝜏 ∙ 𝐵 ∙ 𝑑𝑥	 	

𝑑𝐷
𝑑𝑥
	 = 𝜏 ∙ 𝐵	 Eq.(3)	

	
	 	



	
From	Eq.(2)	and	Eq.(3)	

𝑑𝐷
𝑑𝑥
	 = 𝜌𝐵𝑈j

𝑑𝜃
𝑑𝑥

= 𝜏 ∙ 𝐵	

This	equation	can	be	simplified	as	:	

𝜏	 = 𝜌𝑈j
𝑑𝜃
𝑑𝑥
	

	 This	is	known	as	Von	Karman	equation.	

	
Value	of	shear	stress		𝜏		can	be	found	by	using	the	Newton’s	law	of	viscosity:	
	

𝜏 = 𝜇
𝑑𝑢
𝑑𝑦 gyz

	

	
The	condition		𝑦 = 0		was	used	here	because	the	maximum	shear	stress	occur	at			𝑦 = 0.	
	
	 	



EXAMPLE:	
	
Determine	the	boundary	layer	thickness	and	drag	coefficient	in	laminar	boundary	layer	that	have	
polynomial	velocity	profile.	
	
Polynomial	velocity	profile:	
	

𝑢
𝑈
	 = 2

𝑦
𝛿
−

𝑦
𝛿

j
	

𝜏	 = 𝜌𝑈j
𝑑𝜃
𝑑𝑥
	

𝜏	 = 𝜇
𝑑𝑢
𝑑𝑦 gyz

	

	

𝜃	 =
𝑢
𝑈

1 −
𝑢
𝑈

j
𝑑𝑦 =

2
15
𝛿

�

z
	

	
	
	 	



	
By	using	the	Von	Karman	equation;	 	

	 𝜏 = 𝜌𝑈j
𝑑𝜃
𝑑𝑥

= 	𝜌𝑈j
𝑑
𝑑𝑥

𝜃 = 	𝜌𝑈j
𝑑
𝑑𝑥

2
15
𝛿 	 Eq.(1)	

	
Shear	stress	can	be	found	from	Newton	equation;	 	

	 𝜏 = 𝜇
𝑑𝑢
𝑑𝑦 gyz

	 	

	 𝑢
𝑈
= 2

𝑦
𝛿
−

𝑦
𝛿

j
	 	

	
𝑑𝑢
𝑑𝑦

=
2𝑈
𝛿
−
2𝑈𝑦
𝛿j

	 	

	
𝑑𝑢
𝑑𝑦 gyz

=
2𝑈
𝛿
−
2𝑈 0
𝛿j

=
2𝑈
𝛿
	 	

	 𝜏 = 𝜇
𝑑𝑢
𝑑𝑦 gyz

= 	𝜇 ∙
2𝑈
𝛿
	 Eq.(2)	

	
	 	



From	Eq.(1)	and	Eq.(2)	
	

𝜌𝑈j
𝑑
𝑑𝑥

2
15
𝛿 	 = 𝜇 ∙

2𝑈
𝛿
	

2
15
𝜌𝑈j

𝑑𝛿
𝑑𝑥
	 = 𝜇 ∙

2𝑈
𝛿
	

𝛿 ∙ 𝑑𝛿	 = 	
15
2
∙
1
𝜌𝑈j

∙ 𝜇 ∙
2𝑈
𝛿
∙ 𝑑𝑥	

	 = 	
15𝜇
𝜌𝑈

∙ 𝑑𝑥	

	
	 	



Integrating	both	sides;	

𝛿 ∙ 𝑑𝛿	 = 	
15𝜇
𝜌𝑈

∙ 𝑑𝑥	

𝛿 ∙ 𝑑𝛿	 =
15𝜇
𝜌𝑈

∙ 𝑑𝑥	

𝛿j

2
	 = 	

15𝜇
𝜌𝑈

∙ 𝑥 + 𝐶	

𝑥 = 0, 𝛿 = 0, ⇒ 		𝐶 = 0	

𝛿j	 = 	
2 15𝜇𝑥
𝜌𝑈

=
30𝜇𝑥
𝜌𝑈

	

	 =
30𝜇𝑥
𝜌𝑈

∙
𝑥
𝑥
= 30𝑥j ∙

𝜇
𝜌𝑈𝑥

=
30𝑥j

𝑅𝑒	
	

𝛿	 =
30𝑥j

𝑅𝑒	
	

𝛿	 =
5.48𝑥
𝑅𝑒

	

	
	 	



Shear	stress,			𝜏	;	
	

𝜏	 = 𝜇
2𝑈
𝛿
	

	 Substitute				𝛿 =
�.� ^
¡¢
			

𝜏	 = 0.365 ∙
𝜇𝑈
𝑥	
∙ 𝑅𝑒	

	
Local	drag	coefficient,			𝐶£	
	

𝜏	 = 0.365 ∙
𝜇𝑈
𝑥	
∙ 𝑅𝑒	

𝜏	 = 𝐶£ ∙
1
2
∙ 𝜌𝑈j	

𝐶£	 =
0.73
𝑅𝑒
	

	
	
	 	



Drag	force,			𝐹]	
	

𝐹]	 = 𝜏 ∙ 𝐵 ∙ 𝑑𝑥
f

z
	

	 = 0.365 ∙
𝜇𝑈
𝑥	
∙ 𝑅𝑒 ∙ 𝐵 ∙ 𝑑𝑥

f

z
	

	 = 0.365 ∙
𝜇𝑈
𝑥	
∙
𝜌𝑈𝑥
𝜇

∙ 𝐵 ∙ 𝑑𝑥
f

z
	

	 = 0.365 ∙ 𝑈 𝜌𝑈𝜇 ∙ 𝑥¥
¦
j ∙ 𝐵 ∙ 𝑑𝑥

f

z
	

	 = 0.73 ∙ 𝑈 𝜌𝑈𝜇 ∙ 𝑥
¦
j ∙ 𝐵

z

f
	

	 = 0.73 ∙ 𝑈 𝜌𝑈𝜇 ∙ 𝐿
¦
j ∙ 𝐵	

	 = 0.73 ∙ 𝑈 𝜌𝑈𝜇 ∙ 𝐿 ∙ 𝐵	

	
	 	



Drag	coefficient,			𝐶]	
	

𝐹]	 = 𝐶]
1
2
𝜌𝐴𝑈j	

𝐶]	 =
2 ∙ 𝐹]
𝜌𝐴𝑈j

	

𝐴	 = 𝐿	×	𝐵	

𝐶]	 =
2 0.73 ∙ 𝑈 𝜌𝑈𝜇 ∙ 𝐿 ∙ 𝐵

𝜌𝐴𝑈j
	

	 =
2 0.73 ∙ 𝑈 𝜌𝑈𝜇 ∙ 𝐿 ∙ 𝐵

𝜌 𝐵 ∙ 𝐿 𝑈j
	

	 =
1.46 ∙ 𝜇

𝜌𝑈𝐿
	

𝐶]	 =
1.46
𝑅𝑒
	

	



The	value	of	drag	coefficient,		𝐶]		for	various		
x
|
		are	as	follows:	

	
	

Velocity		 𝛿	 𝐶£	 𝐶]	

𝑢
𝑈
=
𝑦
𝛿
	

3.46𝑥
𝑅𝑒

	
0.578
𝑅𝑒

	
1.153
𝑅𝑒

	

𝑢
𝑈
= 2

𝑦
𝛿
− 2

𝑦
𝛿

j
	

5.48𝑥
𝑅𝑒

	
0.730
𝑅𝑒

	
1.46
𝑅𝑒
	

𝑢
𝑈
=
3
2
𝑦
𝛿
−
1
2
𝑦
𝛿

¨
	

4.64𝑥
𝑅𝑒

	
0.646
𝑅𝑒

	
1.292
𝑅𝑒

	

𝑢
𝑈
= 2

𝑦
𝛿
− 2

𝑦
𝛿

¨
+

𝑦
𝛿

�
	

5.84𝑥
𝑅𝑒

	
0.686
𝑅𝑒

	
1.372
𝑅𝑒

	

𝑢
𝑈
= sin

𝜋
2
𝑦
𝛿
	

4.795𝑥
𝑅𝑒

	
0.654
𝑅𝑒

	
1.310
𝑅𝑒

	

Blasius	exact	solution	
5𝑥
𝑅𝑒
	

0.664
𝑅𝑒

	
1.328
𝑅𝑒

	

	
	 	



A	BLASIUS	EXACT	SOLUTION	
	
	
A	 Blasius	 exact	 solution	 equation	 for	 laminar	 flat-plate	 boundary	 layer	 problem	 derived	 from	
Navier-Stokes	equations	is:	
	

𝑓𝑓«« + 2𝑓««« = 0	
	
or	
	

𝑓 ∙
𝑑j𝑓
𝑑𝜂j

+ 2 ∙
𝑑¨𝑓
𝑑𝜂¨

= 0	

	
where;	
	

𝑓 = 𝑓 𝜂 		, 𝑓«« =
𝑑j𝑓 𝜂
𝑑𝜂j

		 , 𝑓««« =
𝑑¨𝑓 𝜂
𝑑𝜂¨

					

	

	𝜂 = 𝑦
𝑈𝜌
𝜇𝑥

		= 𝑦
𝑈
𝜐𝑥
	

	
	 	



With	suitable	boundary	conditions,	the	above	equation	had	been	solved	by	4th-order	Runge-Kutta	
numerical	integration	and	the	results	is	tabulated	in	table	below.	
	

𝜂 = 𝑦
𝑈
𝜐𝑥
	 𝑓 𝜂 	 𝑓« 𝜂 =

𝑢
𝑈
	 𝑓«« 𝜂 	

0.0	 0.0000	 0.0000	 0.3321	
0.5	 0.0415	 0.1659	 0.3309	
1.0	 0.1656	 0.3298	 0.3230	
1.5	 0.3701	 0.4868	 0.3026	
2.0	 0.6500	 0.6298	 0.2668	
2.5	 0.9964	 0.7513	 0.2174	
3.0	 1.3969	 0.8461	 0.1614	
3.5	 1.8378	 0.9131	 0.1078	
4.0	 2.3059	 0.9555	 0.0642	
4.5	 2.7903	 0.9795	 0.0340	
5.0	 3.2834	 0.9916	 0.0159	
5.5	 3.7807	 0.9969	 0.0066	
6.0	 4.2798	 0.9990	 0.0024	
6.5	 4.7795	 0.9997	 0.0008	
7.0	 5.2794	 0.9999	 0.0002	
7.5	 5.7794	 1.0000	 0.0001	
8.0	 6.2794	 1.0000	 0.0000	

	
Determine:	

𝛿		, 𝐶£		, 𝐶]	
	 	



Boundary	layer	thickness,	𝛿		:	
	
Limit	for	boundary	layer:	
	

𝑢 = 0.99𝑈, 𝑦 = 𝛿	
	
Assumption:		

𝑓« =
𝑢
𝑈
= 0.99	

	
From	table,	the	nearest	value	is		𝜂 = 5	,	
where	𝑓′ = 0.992	
	

𝜂 = 5 = 𝛿 |
¯^
		 	 	 	 	 Eq.(1)	

	
𝑅𝑒 = |^

¯
		⇒ 		 ¡¢

^
	= |

¯
			 	 	 	 Eq.(2)	

	
	 	



From	Eq.(1)	and	Eq.(2);	
	

5	 = 𝛿
𝑈
𝜐𝑥

= 𝛿
𝑈
𝜐
∙
1
𝑥
= 𝛿

𝑅𝑒
𝑥
	 ∙
1
𝑥
	

	 = 𝛿
𝑅𝑒
𝑥j
	 =

𝛿
𝑥

𝑅𝑒	

𝛿	 =
5𝑥
𝑅𝑒
	

	
	 	



Displacement	thickness,	𝛿∗		:	
	
	

𝜂 = 𝑦
𝑈
𝜐𝑥
		⇒ 	

	𝑑𝜂
𝑑𝑦

=
𝑈
𝜐𝑥
		⇒ 𝑑𝑦 = 𝑑𝜂

𝜐𝑥
𝑈
		

	

𝛿∗	 = 1 −
𝑢
𝑈

𝑑𝑦
�

z
	

	 = 1 − 𝑓′ ∙ 𝑑𝜂
𝜐𝑥
𝑈

�

z
	

𝛿∗	 =
𝜐𝑥
𝑈

1 ∙ 𝑑𝜂
�

z
− 𝑓′ ∙ 𝑑𝜂

�

z
	

	 =
𝜐𝑥
𝑈

𝜂 z
� − 𝑓 𝜂 z

� 	

	 =
𝜐𝑥
𝑈

5 − 3.2834 	



𝛿∗	 =
𝜐𝑥
𝑈

1.7166 	

Known	that:		 5 = 𝛿
𝑈
𝜐𝑥
		⇒ 		

𝛿
5
=

𝜐𝑥
𝑈
	

	
	
	

𝛿∗	 =
𝛿
5
1.7166 	

Substitute:		 𝛿 =
5𝑥
𝑅𝑒
	

𝛿∗	 =
1.7166𝑥

𝑅𝑒
	

	
	
	 	



Momentum	thickness,	𝜃		:	
	

𝜃	 =
𝑢
𝑈

1 −
𝑢
𝑈

𝑑𝑦
�

z
	

	 = 𝑓′ 1 − 𝑓′ ∙ 𝑑𝜂
𝜐𝑥
𝑈

�

z
	

	 =
𝜐𝑥
𝑈

𝑓′ 1 − 𝑓′ ∙ 𝑑𝜂
�

z
	

	 =
𝛿
5

𝑓′ 1 − 𝑓′
�

z

∙ ∆𝜂	

	 Pengiraan	di	atas	dibuat	berdasarkan	
table.	

	 	



	
∆𝜂 = 0.5	 	 	

𝜂	 𝑓′	 𝑓′ 1 − 𝑓′ ∙ ∆𝜂	
0	 0	 0	
0.5	 0.1659	 0.069188595	
1	 0.3298	 0.11051598	
1.5	 0.4868	 0.12491288	
2	 0.6298	 0.11657598	
2.5	 0.7513	 0.093424155	
3	 0.8461	 0.065107395	
3.5	 0.9131	 0.039674195	
4	 0.9555	 0.021259875	
4.5	 0.9795	 0.010039875	
5	 0.9916	 0.00416472	
	 	 0.65486365	

	
	 	



	

𝜃	 =
𝛿
5

𝑓′ 1 − 𝑓′
�

z

∙ ∆𝜂	

	 =
𝛿
5
0.65486365 	

Substitute:		 𝛿 =
5𝑥
𝑅𝑒
	

	

𝜃 =
0.6548𝑥

𝑅𝑒
	

	
This	value	is	slightly	different	from	the	official	value	because	the	number	of	
data	was	limited.	

	

The	official	value	of	momentum	thickness	is:	
	

𝜃 =
0.664𝑥
𝑅𝑒

	

	
	
	 	



Shear	wall	stress,		𝜏 ∶	
	

Known	that	:	
	
𝑢
𝑈
=
𝑑𝑓
𝑑𝜂

= 𝑓« ² = 𝑓« 	⇒ 		𝑢 = 𝑈 ∙ 𝑓′		

	
𝑑𝑢
𝑑𝜂

= 𝑈 ∙ 𝑑𝑓′	

	

𝜂 = 𝑦
𝑈
𝜐𝑥
		⇒ 		

𝑑𝜂
𝑑𝑦

=
𝑈
𝜐𝑥
	

𝜏	 = 𝜇
𝑑𝑢
𝑑𝑦 gyz

	

	 = 𝜇
𝑑𝑢
𝑑𝜂

∙
𝑑𝜂
𝑑𝑦 ²yz

	



	 = 𝜇 𝑈 ∙ 𝑑𝑓′ ∙
𝑈
𝜐𝑥

²yz

	

	 = 𝜇 ∙ 𝑈
𝑈
𝜐𝑥

𝑑𝑓′ ²yz	

𝜏	 = 𝜇 ∙ 𝑈
𝑈
𝜐𝑥

𝑓′′ ²yz 	

	 = 𝜇 ∙ 𝑈
𝑈
𝜐𝑥
∙ 0.3321 	

𝜏	 =
0.3321𝜌𝑈j

𝑅𝑒
	



Local	friction	coefficient,		𝐶£	
	

𝐶£	
=

𝜏
1
2 𝜌𝑈

j
	

	 =

0.3321𝜌𝑈j

𝑅𝑒
1
2𝜌𝑈

j
	

𝐶£	 =
0.6642
𝑅𝑒

	

	
	
	 	



Drag	coefficient,	𝐶]	
	

𝐶]	 =
𝜏 ∙ 𝐵 ∙ 𝑑𝑥

1
2 𝜌𝑈

j ∙ 𝐵 ∙ 𝐿
	

	 =
𝜌𝑈j ∙ 𝑑𝜃𝑑𝑥 ∙ 𝐵 ∙ 𝑑𝑥
1
2 𝜌𝑈

j ∙ 𝐵 ∙ 𝐿
	

	 =
𝑑𝜃

1
2 ∙ 𝐿

=
2𝜃
𝐿
	

Diketahui		 𝜃 =
0.6548𝑥

𝑅𝑒
	

𝐶]	 =
1.3096
𝑅𝑒

	

	



If	the	official	value	of	momentum	
thickness	is	used,	 𝜃 =

0.664𝑥
𝑅𝑒

	

The	value	of	drag	coefficient	will	
become:	 𝐶] =

1.328
𝑅𝑒

	

	
	
	
	
	


