CHAPTER 4
LAMINAR BOUNDARY LAYER

LIFT AND DRAG FORCE
Lift and Drag

F

Lift force
perpendicular to airflow

Drag force
parallel to the airflow

Drag force = [ dFy

Lift force = [ dFy



Assume there is an inclined plate of dA and a fluid flow passes it with velocity U

T

7

(1)

Due to the U flow velocity, there is a change in the pressure acting on the plane surface. It can be

described according to Bernoulli's law.
There is a pressure, then the force could be produced.

F=P-A
(2)
The airflow also causes friction due to fluid viscosity, and this also causes the resulting force.

F=1t-A



Thus, there are two (2) resulting forces and it can be summarized as follows:

- ) |

P.




(

=fP-c059.dA+fT-sin0.dA

Drag Force, Fp, :J d-F,

(

=fP-sin0.dA+fr-cost9.dA

Lift Force, F; :J d-F,




The drag force and lift force calculations can be done using the following basic formula:

1 2
FD =CDEPAU

1 2
FL=CL§pAU

where;

Fp = Drag Force

F; = Lift Force

Cp = Coefficient of Drag
C; = Coefficient of Lift
p = Density of fluid

A = Area

U = Velocity of fluid

The value of the area, A , will change according to the conditions and definitions.



Falling Sphere Falling Cylinder (end down) Falling Cylinder (side down)
C=0.5 C=0.8 Cx].1

A=2rL

P



Form

Skin
friction

0%

100%

~10%

~90%

~90%

~10%

100%

0%




Boundary layer, in fluid mechanics, thin layer of a flowing gas or liquid in contact with a surface such
as that of an airplane wing or of the inside of a pipe. The fluid in the boundary layer is subjected to
shearing forces. A range of velocities exists across the boundary layer from maximum to zero,
provided the fluid is in contact with the surface. Boundary layers are thinner at the leading edge of
an aircraft wing and thicker toward the trailing edge. The flow in such boundary layers is generally
laminar at the leading or upstream portion and turbulent in the trailing or downstream portion.
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Definition:
A distance from the surface where the local velocity equals 99% of the free stream velocity, U.

6= Y(u=0.990)
6 = boundary layer thickness
y = distance in y-direction
u = local velocity
U = free stream velocity
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Ficure 6.6 Velocity boundary layer development on a flat plate.



DISPLACEMENT THICKNESS, 6*
Definition:

The distance the surface would have to move in the y-direction to reduce the flow passing by a
volume equivalent to the real effect of the boundary layer.

[t is written as delta-star, 6

Calculation of the displacement thickness is done by using the idea of conservation of mass.



U @{ UUQ o
) @ 4 u\ %dy

Flat plate

_ Mass m
Density, p = Volume V

m = pV
= pX(length X height X width)
= pX(U X 3§ x1)
= pUéd



Conservation of mass

mA :mB‘l‘mC

)
pU&S =f pu-dy+ pUés*
0

8 )
pUS* = pUcS—f pu - dy =f (pU — pu) dy
0 0




Therefore, the formula for determining the displacement thickness is:

6" = displacement thickness
6 = boundary layer thickness
u = local velocity

U = free stream velocity



MOMENTUM THICKNESS, 6

Definition:

The distance by which a surface would have to be moved parallel to itself towards the reference
plane in an inviscid fluid stream of velocity, u to give the same total momentum as exists between
the surface and the reference plane in a real fluid.

[t is written as theta, 6

Calculation of the momentum thickness is done by using the idea of conservation of momentum.



Flat plate

2 mViy, = 2 mVout

Mass Velocity
IN pUb U
5
OouT J pu-dy u
0
OUT pUS* U
OUT pUB U




z mVy, = z mVout

8
pU6S - U =j pu-u-dy+pUés*-U+pU6-U
0

5
pU?2§ =j pu?-dy + pU?8* + pU?0
0

)
It is known that: 6" = j (1 — i) dy
0

U
pU?%6 =j
0

8 8
=j puz-dy+pU25—j pUu-dy + pUZ?6
0 0

) )

u
2, 2 - 2
pu‘-dy + pU jo(l U)dy+pU0



5 5
pU?0 =pU25—j puz-dy—pU25+j pUu - dy
0 0

6

5
pU?0 =iju-dy—jpu2-dy
0 0

8 5 1q,2
pUu j pu
0 = dy— | —=-d
jo puz T puz
jau . j6u2 )
—_— —_— y_ —_— y
o U o U?

)
L3




Therefore, the formula for determining the momentum thickness is:

6 = momentum thickness

6 = boundary layer thickness
u = local velocity

U = free stream velocity



EXAMPLE

. oF 0
Determine the — and =

5 = for the velocity distribution of % =

é

5° =j06(1—%)dy=j (1—%)dy=%5

0

S| D

SRS



VON-KARMAN EQUATION

It was introduces by T. Von Karman (1881 - 1963) by using the idea of conservation of momentum.

- Ada
/ kel |m3¢m
| Mome wbum -

Momentum in = Momentum out
Momentum can be calculated as:

Momentum =m X V
m = mass = p X (V)
I = Velocity
V = Volume



mass of the shaded area is:
m=p(U —u)B-dy

Momentum deficit, d , of the shaded area is:

d =mV
=p(U—-u)B-dy-u



Total momentum deficit, D is:
5

D = Bf (U =) dy = BUzj E<E—E>-d
=pB | uU-w-dy=pBU* | 7(5-7) dy

=pBU2j06%(1—%)-dy

= pBU?6 Eq.(1)

Differentiate to dx

— = pBU%*— Eq.(2)
dD =71-dA

=71'B Eq.(3)



From Eq.(2) and Eq.(3)

dD ,do

— = pBU =71'B
dx p t

=
This equation can be simplified as :
T = plU?—
& dx

This is known as Von Karman equation.

Value of shear stress t can be found by using the Newton’s law of viscosity:

The condition y = 0 was used here because the maximum shear stress occurat y = 0.



EXAMPLE:

Determine the boundary layer thickness and drag coefficient in laminar boundary layer that have
polynomial velocity profile.

Polynomial velocity profile:

7 -2)-6)

T = Zﬁ
dx
)
=u\—
T dy ,



By using the Von Karman equation;

do d d /2
_ 2 _ 2 — 2_— (= Eq.(1
t=pU dx pU dx(e) pU dx<155> a.(1)

Shear stress can be found from Newton equation;

B (du)
T=U & -

U N (Y
5=2(g)—(g)
du 2U 2Uy
dy & &2
du 20 2U(0) 2U
(dy>y=0 "5 82 6

2

r=,u<d—u>_ =M'2?U Eq.(2)



From Eq.(1) and Eq.(2)
PE ax \15 s

2 248 _ 20

1577 @ ~H's

5.d5 — 15 1 2U
2 pU?2 s
15
= . dx



Integrating both sides;

55 = 2F. g
15u
j6 d5 —jp—UdX
52  15u
E? —-Fﬂ] x+C
x =0, 6 =0, =3
52 _ (2)15px  30ux

pU pU
30ux x 30x?
_ 2 . — = 30x2 - a

pU x * pUx Re

2
5 _ 30x
Re




Shear stress, T;

. 2U
. _ 5.48x
Substitute § = T

T = 0.365 -M?-VRe

Local drag coefficient, C,



Drag force, Fp
L
FD =j T'B'dx
0

L
U
=j 0.365-'ux—-\/Re-B-dx
0

L
=j 0.365 - —- B -dx
0
L 1
=j 0.365-U,/pUu-x 2-B-dx
0
1 L
= l0.73 U/ pUu - x2 - Bl
0
1
=0.73-U/pUu-L2-B

=0.73-U/pUu-VL B



Drag coefficient, Cp

1 2
FD = CD EPAU

C _ZFD
D pAU?
A =LXB

2(0.73 - U,/pUp VL B)
Cp =
pAU?

~2(0.73-U,/pUp-VL"B)
B p(B-L)U?

146y

JpUL

1.46

Crn = ——
b VRe



The value of drag coefficient, C, for various % are as follows:

Velocity ) Cq Cp
u y 3.46x 0.578 1.153
U~s VRe VRe VRe
u_ ) (X) _2 (X)Z 5.48x 0.730 1.46
U 5 5 VRe VRe VRe
u 3.\ 1\ 4.64x 0.646 1.292
U2 (E) 2 (5) VRe VRe VRe
u_ ) (X) _2 (X)3 N (X 5.84x 0.686 1.372
U 5 5 5 VRe VRe VRe
u Ty 4.795x 0.654 1.310
g = sin (Eg) N Tre N
Blasius exact solution S_x 0.064 1528
VRe VRe VRe




A BLASIUS EXACT SOLUTION

A Blasius exact solution equation for laminar flat-plate boundary layer problem derived from
Navier-Stokes equations is:

ffll _I_ Zflll — 0
or
dzf d3f
4L =
f dn? T dn3 0
where;
. d?f0 L dAAf@)
f - f(’?) ) f - dnz ) f - dng
Up U
n=y|—— =Y |—

Ux UXx



With suitable boundary conditions, the above equation had been solved by 4t-order Runge-Kutta
numerical integration and the results is tabulated in table below.

U , u i
=y |— f@) =g ")
0.0 0.0000 0.0000 0.3321
0.5 0.0415 0.1659 0.3309
1.0 0.1656 0.3298 0.3230
1.5 0.3701 0.4868 0.3026
2.0 0.6500 0.6298 0.2668
2.5 0.9964 0.7513 0.2174
3.0 1.3969 0.8461 0.1614
3.5 1.8378 0.9131 0.1078
4.0 2.3059 0.9555 0.0642
4.5 2.7903 0.9795 0.0340
5.0 3.2834 0.9916 0.0159
5.5 3.7807 0.9969 0.0066
6.0 4.2798 0.9990 0.0024
6.5 4.7795 0.9997 0.0008
7.0 5.2794 0.9999 0.0002
7.5 5.7794 1.0000 0.0001
8.0 6.2794 1.0000 0.0000
Determine:



Boundary layer thickness, ¢ :
Limit for boundary layer:

u = 0.99U, y=90

Assumption:
f'===10.99

From table, the nearestvalueis n =5,
where f' = 0.992

U
n=5=§ — Eq.(1)

Ux Re U

Re = T ? = ; EC](Z)



From Eq.(1) and Eq.(2);



Displacement thickness, §* :

= d d /vx
=y vx vx Y =an U

5 =f06(1—%)dy

=f05(1—f’)-dn\/¥
6" =\/?<f1 dn — f(f) dn)

= (13 - )

vXxX
= /_ — 3.2834
U (5 —3.2834)



UX
" = |[—(1.71
> (1.7166)
Known that: 5=g¢§ l = éz /E
UX 5 U

)
6" =z (1.7166)

5x
Substitute: 0 = —

VRe

5t = 1.7166x
VvRe




Momentum thickness, 6 :

- f:f’m ~ 1 dn [5
=\/%<f05f’(1—f’)-dn>
6 5
=) Fa=f)-an
0

Pengiraan di atas dibuat berdasarkan
table.



An = 0.5

n f' ffA=f)-Any
0 0 0
0.5 0.1659 0.069188595
1 0.3298 0.11051598
1.5 0.4868 0.12491288
2 0.6298 0.11657598
2.5 0.7513 0.093424155
3 0.8461 0.065107395
3.5 0.9131 0.039674195
4 0.9555 0.021259875
4.5 0.9795 0.010039875
5 0.9916 0.00416472

0.65486365




5
6 ! AN
0 =§Zf(1—f) Y

)
=z (0.65486365)

5x
Substitute: 6 = —

VRe

B 0.6548x
VRe

This value is slightly different from the official value because the number of
data was limited.

The official value of momentum thickness is:

g = 0.664x
VvRe




Shear wall stress, 7 :

Known that :

u df
—_ = — = ’(n)z ! = - f!
U= dn f ff=>u=U-f

1=V T ay T
()
T = U7

dy/,_o

B (du dn)

~ M \an dy



U
=K U\/; (df’)n=0

U
T =u-U E ((f”)n=o)

/U
=u-U |—-(0.3321)
UX

0.3321pU?
T =
VRe




Local friction coefficient, C,

T

Cq %pUZ

0.3321pU?

VRe




Drag coefficient, Cp,

_ Jt-B-dx
Cp ~1

prZ-Z—i-B-dx
-1

EIOUZBL

_ 0.6548x

Diketahui
VRe




If the official value of momentum
thickness is used,

The value of drag coefficient will
become:




