
CHAPTER	4	
LAMINAR	BOUNDARY	LAYER	
	
THERMAL	BOUNDARY	LAYER	
	
Just	as	a	velocity	boundary	layer	develops	when	there	is	fluid	flow	over	a	surface,	a	thermal	
boundary	layer	must	develop	if	the	fluid	free	stream	and	surface	temperatures	differ.	Consider	
flow	over	an	isothermal	flat	plate,	as	shown	below.		
	
At	the	leading	edge	the	temperature	profile	is	uniform,	with		𝑇 𝑦 = 𝑇N.	
	
However,	fluid	particles	that	come	into	contact	with	the	flat	plate	achieve	thermal	equilibrium	at	
the	plate’s	surface	temperature.	In	turn,	these	particles	exchange	energy	with	those	in	the	
adjoining	fluid	layer,	and	temperature	gradients	develop	in	the	fluid.	
	
The	region	of	the	fluid	in	which	these	temperature	gradients	exist	is	the	thermal	boundary	layer,	
and	its	thickness		𝛿U			or		𝛿V		is	typically	defined	as	the	value	of		𝑦		for	which	the	ratio	
	

𝑇W − 𝑇
𝑇W − 𝑇N

= 0.99	

	
With	increasing	distance	from	the	leading	edge,	the	effects	of	heat	transfer	penetrate	further	into	
the	free	stream	and	the	thermal	boundary	layer	grows.	
	
	 	



	
	

	
	
	 	



For	laminar	flow:	
	
Thermal	boundary	layer	thickness,		𝛿V 	 ∶	
	

𝛿V =
𝛿_

𝑃𝑟
b
c
= 𝛿_ 𝑃𝑟 db c	

	

𝑃𝑟 =
Viscous	diffusion	rate
Thermal	diffusion	rate

=
𝜐
𝛼
=
𝑐i𝜇
𝑘
	

where:	
𝑐i = Specific	heat	(J/kg.K)	
𝜇 = Dynamic	viscosity	(Pa.s)	

𝑘	=	Thermal	conductivity	(W/m.K)	
𝜐 = Kinematic	viscosity	(mq/𝑠)	
𝛼 = Thermal	diffusivity	(mq/𝑠)	

	
From	Blasius	velocity	boundary	layer	thickness		𝛿_		:	
	

𝛿_ =
5𝑥
𝑅𝑒
	

	
	 	



Case	1:	
	
If			𝑃𝑟 = 1						𝛿V = 𝛿_	
	
The	thermal	boundary	layer	at	any		𝑥		is	equals	the	thickness	of	the	velocity	boundary	layer.	
	
Case	2:	
	
If			𝑃𝑟 < 1						𝛿V > 𝛿_	
	
The	thermal	boundary	layer	at	any		𝑥		is	thicker	than	the	thickness	of	the	velocity	boundary	layer.	
	
Case	3:	
	
If			𝑃𝑟 > 1						𝛿V < 𝛿_	
	
The	thermal	boundary	layer	at	any		𝑥		is	thinner	than	the	thickness	of	the	velocity	boundary	layer.	
For	example,	an	oil	with			𝑃𝑟 = 1000			has			𝛿V ≈

}~
b�
	

	
	 	



	
	
	

	

	
	
	 	



	
For	turbulent	flow:	
	
The	thermal	boundary	layer	thickness	for	turbulent	flow	does	not	depend	on	the	Prandtl	number	
but	instead	on	the	Reynolds	number.		
	

𝛿V = 𝛿_ =
0.37𝑥
𝑅𝑒�

� = 0.37𝑥 𝑅𝑒�db � 	

	
This	turbulent	boundary	layer	thickness	formula	assumes:	
	
(1) The	flow	is	turbulent	right	from	the	start	of	the	boundary	layer.	
(2) The	turbulent	boundary	layer	behaves	in	a	geometrically	similar	manner.	

	
Neither	one	of	these	assumptions	is	true	for	the	general	turbulent	boundary	layer	case	so	care	must	
be	exercised	in	applying	this	formula.	
	
	
	 	



Example	01:	
Assuming	that	the	thermal	boundary	layer	of	air	is	the	same	thickness	as	the	momentum	boundary	
layer.	Calculate	the	thickness	of	the	thermal	boundary	layer	1.00	cm	away	from	the	leading	edge	of	
a	flat	plate	if	the	thermal	diffusivity	is		𝛼 = 2.009×10d�		𝑚q/𝑠		and	the	free	stream	velocity	is		𝑈 =
7.0	𝑐𝑚/𝑠	.	
	

𝑅𝑒 =
𝜌𝑉𝐿
𝜇

=
1.23 0.07 0.01

1.8×10d�
= 47.83	

	
The	flow	is	laminar.	

𝛿V =
𝛿_

𝑃𝑟
b
c
= 𝛿_ 𝑃𝑟 db c	

	

𝑃𝑟 =
𝜐
𝛼
=
1.47×10d�

2.009×10d�
= 0.7317	

	

𝛿_ =
5𝑥
𝑅𝑒

=
0.05
6.916

= 0.00723	

	

𝛿V = 0.00723 0.7317
db
c = 0.00802			 𝑚 	

	
	 	



Example	02:	
Calculate	the	ratio	of	thermal	boundary	layer	thickness	to	hydrodynamic	boundary	layer	thickness	
for	glycerine	and	hydrogen.	
	
For	glycerine:		𝑃𝑟 = 2450	
	

𝛿V
𝛿_

= 2450
db
c = 0.07418	

	
	
For	hydrogen:		𝑃𝑟 = 0.684	
	

𝛿V
𝛿_

= 0.684
db
c = 1.13496	

	
	
	
	 	



Example	03:	
For	air	at	15℃	flowing	over	a	flat	plate	at	a	free	stream	velocity	of	6	m/s.	Determine	the	velocity	
boundary	layer	and	thermal	boundary	layer	thickness	at	a	distance	of	0.5	m	from	the	leading	edge.		
	

𝑅𝑒 =
𝜌𝑉𝐿
𝜇

=
1.23 6 0.5
1.8×10d�

= 205,000	

	
The	flow	is	laminar.	

𝛿V =
𝛿_

𝑃𝑟
b
c
= 𝛿_ 𝑃𝑟 db c	

	
𝑃𝑟 = 0.699	

	

𝛿_ =
5𝑥
𝑅𝑒

=
2.5

452.76926
= 0.0055216	

	

𝛿V = 0.0055216 0.699
db
c = 0.006221			 𝑚 	

	
	 	



Example	04:	
	
Find	the	thermal	entry	length	for	plug	flow	between	two	parallel	plate	with	gap	2L	(assumed	that	
there	is	uniform	heat	flux).	
	
Thermal	entry	length	is	defined	as	the	location	where	the	thermal	boundary	layer	grown	from	the	
plate	met	at	the	centre	line.	

	
	
Thermal	entry	length	for	a	flow	between	two	plates	at	2L	is	given	by:	
For	uniform	wall	heat	flux	condition:	

𝐿V Laminar = 0.033 𝑅𝑒 𝑃𝑟 𝐷 	
	
For	uniform	wall	temperature	condition:	

𝐿V Laminar = 0.043 𝑅𝑒 𝑃𝑟 𝐷 	
	

𝐷 = Distance	between	two	plates.	
	 	



Entry	length	for	a	flow	in	a	pipe:	
	

𝐿V Laminar = 0.05 𝑅𝑒 𝑃𝑟 𝐷 	
	

𝐿V Turbulent = 10 𝐷 	
	
	
	
	 	



Example	05:	
	
Glycerin	at	10℃	is	flowing	over	a	flat	plate	at	a	free	stream	velocity	of	2	m/s.	Determine	the	velocity	
and	thermal	boundary	layer	thickness	at	a	distance	of	0.75	m	from	the	leading	edge.	Also	calculate	
the	ratio	of	the	velocity	boundary	layer	thickness	to	the	thermal	boundary	layer	thickness	for	this	
flow	and	interpret	the	result.	
	
Assumed	that:	

𝜐 = 0.0033421		𝑚q/𝑠	
	

𝑃𝑟 = 34000	
	

𝑅𝑒 =
𝑉𝐿
𝜐
= 449	

(Laminar)	
Calculate	the	velocity	boundary	layer	thickness:	
	

𝛿_ =
5𝑥
𝑅𝑒

= 0.177		𝑚	

	
Therefore,	the	velocity	boundary	layer	thickness	at	a	distance	0.75	m	from	the	leading	edge	of	the	
plate	is	0.177	m.	
	
	 	



Calculate	the	thermal	boundary	layer	thickness:	
	

𝛿V =
𝛿

𝑃𝑟
b
c
= 0.005464			𝑚	

	
Therefore,	the	thermal	boundary	layer	thickness	at	a	distance	0.75	m	from	the	leading	edge	of	the	
plate	is	0.005464	m.	
	
Calculate	the	ratio	of	velocity	boundary	layer	thickness	to	the	thermal	boundary	layer	thickness:	
	

𝛿_
𝛿V

=
0.177

0.005464
= 32.39	

	
Conclusion:	As	the	Prandtl	number	is	very	high	for	glycerine,	the	velocity	boundary	layer	thickness	
is	more	than	the	thermal	boundary	layer	thickness.	
	
	
	
	 	



Example	06:	
	
Engine	oil	at	100℃	and	a	velocity	of	0.1	m/s	flows	flows	over	both	surface	of	a	0.8	m	long	flat	plate	
maintained	at	20℃.			Determine:		
a) Velocity	boundary	layer	thickness	at	the	trailing	edge	(m)	
b) Thermal	boundary	layer	thickness	at	the	trailing	edge	(m)	
c) The	magnitude	of	the	local	heat	flux	at	the	trailing	edge	(W/m2)	
d) The	local	surface	shear	stress	at	the	trailing	edge	(N/m2)	
e) The	total	drag	force	per	unit	width	of	the	plate	(N/m)	
f) The	magnitude	of	the	heat	transfer	per	unit	width	of	the	plate	(W/m)	

	
Properties	of	engine	oil	at				𝑇��� =

V�dV�
q

= 60℃		:	
𝜌 = 864			𝑘𝑔/𝑚c	

𝜐 = 8.61	×	10d�	𝑚q/𝑠	
𝑘 = 0.14		𝑊/𝑚 ∙ 𝐾	

𝑃𝑟 = 1081	
𝑅𝑒 = 929	

	
(a)	

𝛿_ =
5𝑥
𝑅𝑒

= 0.1312			𝑚	

	
	 	



(b)	

𝛿V =
𝛿

𝑃𝑟
b
c
= 0.01278			𝑚	

	
(c)	
For	laminar	flow:	

𝑁𝑢� =
ℎ𝑥
𝑘
= 0.332 𝑅𝑒b/q 𝑃𝑟b/c 	

	
ℎ = Heat	transfer	coefficient	(W/mq∙K)	

𝑘 = Thermal	conductivity	of	the	material	(W/m∙K)	
	

ℎ =
𝑘
𝑥
0.332 𝑅𝑒b/q 𝑃𝑟b/c = 18.17			(W/mq∙K)	

	
Heat	flux:	

𝑞� = 𝑞� = ℎ 𝑇W − 𝑇N = 18.17 20 − 100 = −1453.6			W/mq	
	
	 	



(d)	
From	Blasius,	the	local	shear	stress:	

𝜏 = 𝐶� ∙
1
2
𝜌𝑈q =

0.6642
𝑅𝑒

∙
1
2
𝜌𝑈q = 0.094			𝑁/𝑚q	

	
(e)	
Total	drag	force	per	unit	width,	for	2	surfaces:	
	

𝐹¡ = 2𝐶¡ ∙
1
2
𝜌 𝐿×𝑊 𝑈q =

1.328
𝑅𝑒

∙
1
2
𝜌 𝐿×𝑊 𝑈q	

	
𝐹¡
𝑊
= 2𝐶¡ ∙

1
2
𝜌 𝐿 𝑈q =

1.328
𝑅𝑒

∙ 𝜌 𝐿 𝑈q = 0.301		𝑁/𝑚	

	
(f)	
The	magnitude	of	the	heat	transfered	per	unit	width	of	the	plate	(W/m),	(2	plates):	
	

𝑄 = ℎ𝐴 𝑇W − 𝑇N = ℎ 𝐿×𝑊 𝑇W − 𝑇N 	
	

𝑄
𝑊
= 2ℎ 𝐿 𝑇W − 𝑇N = −4651.5			𝑊/𝑚	

	
	 	



HEAT	FLUX	
	
Heat	flux	or	thermal	flux,	 	𝑞�		is	defined	as	the	amount	of	heat	transferred	per	unit	area	per	unit	
time	from	or	to	a	surface.	In	SI	its	units	are	watts	per	square	metre	(W/m2).	
	

𝑞� =
𝑑
𝑑𝑥

𝜌𝑐i𝑢 𝑇 − 𝑇¦
N

�
𝑑𝑦	

	
Known	that:	

𝑇 − 𝑇¦
𝑇� − 𝑇¦

= 1 −
𝑢
𝑈
	

	
𝑢
𝑈
=
2𝑦
𝛿
−

𝑦
𝛿

q
	

	
If	the	laminar	flow	velocity	profile	is	assumed	to	be	quadratic,	we	can	evaluate	the	heat	
transferred	approximately	by	using	above	mentioned	equations:	
	
	 	



We	could	write	above	equations	as:	
	

𝑢	 = 𝑈
2𝑦
𝛿
−

𝑦
𝛿

q
	 [1]	

𝑇 − 𝑇¦	 = 𝑇� − 𝑇¦ 1 −
𝑢
𝑈
	 [2]	

𝑞�	 =
𝑑
𝑑𝑥

𝜌𝑐i𝑢 𝑇 − 𝑇¦
N

�
𝑑𝑦	 [3]	

	
From	[1]	and	[2],	[3]	can	be	written	as:	
	

𝑞�	 =
𝑑
𝑑𝑥

𝜌𝑐i𝑢 𝑇 − 𝑇¦
N

�
𝑑𝑦	 	

	 =
𝑑
𝑑𝑥

𝜌𝑐i𝑈
2𝑦
𝛿
−

𝑦
𝛿

q
𝑇� − 𝑇¦ 1 −

𝑢
𝑈

𝑑𝑦
N

�
	 	

	 =
𝑑
𝑑𝑥

𝜌𝑐i𝑈 𝑇� − 𝑇¦
2𝑦
𝛿
−

𝑦
𝛿

q
1 −

𝑢
𝑈

𝑑𝑦
N

�
	 	

	 =
𝑑
𝑑𝑥

𝜌𝑐i𝑈 𝑇� − 𝑇¦
2𝑦
𝛿
−

𝑦
𝛿

q
1 −

2𝑦
𝛿V

−
𝑦
𝛿V

q
𝑑𝑦

}©

�
	 	

	
	 	



	

𝑞�	 =
𝑑
𝑑𝑥

𝜌𝑐i𝑈 𝑇� − 𝑇¦
2𝑦
𝛿
−

𝑦
𝛿

q
1 −

2𝑦
𝛿V

+
𝑦
𝛿V

q
𝑑𝑦

}©

�
	 	

	
We	solve	the	integral	part	first:	
	

2𝑦
𝛿
−

𝑦
𝛿

q
1 −

2𝑦
𝛿V

+
𝑦
𝛿V

q}©

�
𝑑𝑦	 =

2𝑦
𝛿
−
𝑦q

𝛿q
1 −

2𝑦
𝛿V

+
𝑦q

𝛿Vq
}©

�
𝑑𝑦	 	

	 =
𝛿Vq

𝛿
1
6
−
𝛿Vc

𝛿q
1
30

	 	

Multiply	with		}
}
	 = 𝛿

𝛿Vq

𝛿q
1
6
−
𝛿Vc

𝛿c
1
30

	 	

Assumed		}©
}
= 𝐵	 = 𝛿

𝐵q

6
−
𝐵c

30
	 	

	
	
	 	



Heat	flux	will	become:	

𝑞�	 =
𝑑
𝑑𝑥

𝜌𝑐i𝑈 𝑇� − 𝑇¦
2𝑦
𝛿
−

𝑦
𝛿

q
1 −

2𝑦
𝛿V

+
𝑦
𝛿V

q
𝑑𝑦

}©

�
	 	

	 =
𝑑
𝑑𝑥

𝜌𝑐i𝑈 𝑇� − 𝑇¦ 𝛿
𝐵q

6
−
𝐵c

30
	 	

	
	
From	basic	equation:	

𝑇 − 𝑇¦	 = 𝑇� − 𝑇¦ 1 −
2𝑦
𝛿V

+
𝑦q

𝛿Vq
	 	

Differentiate			𝑇			to			𝑦	 	 	

𝑑𝑇
𝑑𝑦
	 = 𝑇� − 𝑇¦ −

2
𝛿V
+
2𝑦
𝛿Vq

	 	

𝑑𝑇
𝑑𝑦 ¬­�

	 = 𝑇� − 𝑇¦ −
2
𝛿V

	 	

	
	 	



Known	that:	

𝑞�	 = 𝑇� − 𝑇¦ 1 −
2𝑦
𝛿V

+
𝑦q

𝛿Vq
	 	

Differentiate			𝑇			to			𝑦	 	 	

𝑑𝑇
𝑑𝑦
	 = −𝑘

𝑑𝑇
𝑑𝑦 ¬­�

	 	

	 = −𝑘 𝑇� − 𝑇¦ −
2
𝛿V

=
2𝑘 𝑇� − 𝑇¦

𝛿V
	 	

	 =
2𝑘 𝑇� − 𝑇¦

𝐵𝛿
	 	

𝐵 = }©
}
			,			𝑘 = 𝜌𝑐i𝑈	 	 	

	
	
	
	
	


