
CHAPTER	4	
LAMINAR	BOUNDARY	LAYER	
	
INVISCID	FLOW	PAST	WEDGES	AND	CORNERS	
FALKNER-SKAN	SOLUTION	
	
In	fluid	dynamics,	the	Falkner–Skan	boundary	layer	(named	after	V.	M.	Falkner	and	Sylvia	W.	Skan)	
describes	the	steady	two-dimensional	laminar	boundary	layer	that	forms	on	a	wedge,	i.e.	flows	in	
which	the	plate	is	not	parallel	to	the	flow.	It	is	a	generalization	of	the	Blasius	boundary	layer.	
	
Falkner	and	Skan	(1931)	found	that	similarity	was	achieved	by	the	variable			𝜂 = 𝐶𝑦𝑥^		,	which	is	
consistent	with	a	power-law	free	stream	velocity	distribution.	
	

𝑈 𝑥 = 𝐾𝑥a	
	

𝑚 = 2𝑎 + 1	
	
The	exponent		𝑚		may	be	termed	the	Falkner-Skan	power-law	parameter.	The	constant		𝐶		must	
make			𝜂		dimensionless	but	is	otherwise	arbitrary.	
	
The	best	choice	is		𝐶g = h ija

gk
		,	which	is	consistent	with	its	limiting	case	for		𝑚 = 0	,	the	Blasius	

variable.	
	 	



Thus;	

𝜂 = 𝑦
𝑚 + 1
2

𝑈 𝑥
𝜐𝑥

= 𝑦
𝑚 + 1
2

𝑈
𝜐𝑥
	

	
Substituting	this	particular		𝐶		into	Eq.4-67,	gives	the	most	common	form	of	the	Falkner-Skan	
equation	for	similar	flows:	
	

𝑓ttt + 𝑓𝑓tt + 𝛽 1 − 𝑓tg = 0	
	
where	

𝛽 =
2𝑚
1 +𝑚

	
	

	
	 	



	
	
	 	



EXAMPLE	
Estimate	the	variation	of	surface	velocity	along	the	wall	if	angle	of	wedge	is	10°.	
	

	
	
Known	that:		
𝑈 𝑥 = 𝐾𝑥a			and			𝑚 = 2𝑎 + 1	
	
yz
g
= 10°			,			so	that			𝛽 = i

{
	

	
𝛽 = ga

ija
= i

{
			,			so	that			𝑚 = i

i|
	

	
Velocity	profile	is				𝑈 𝑥 = 𝐾𝑥

}
}~	

	 	



	

𝛽	 𝑚	 Description	of	flow	

−2 ≤ 𝛽 ≤ 0	 −
1
2
≤ 𝑚 ≤ 0	 Flow	around	an	expansion	corner	of	turning	angle		yz

g
	

𝛽 = 0	 𝑚 = 0	 The	flat	plate	

0 ≤ 𝛽 ≤ +2	 0 ≤ 𝑚 ≤ ∞	 Flow	against	a	wedge	of	half	angle		yz
g
	

𝛽 = 1	 𝑚 = 1	 The	plane	stagnation	point	(180°	wedge)	

𝛽 = +4	 𝑚 = −2	 Doublet	flow	near	a	plane	wall	

𝛽 = +5	 𝑚 = −
5
3
	 Double	flow	near	a	90°	corner	

𝛽 = +∞	 𝑚 = −1	 Flow	toward	a	point	sink	

	
	 	



THE	PLANE	LAMINAR	JET	FLOW	
	
Consider	a	plane	jet	emerging	into	a	still	ambient	fluid	from	a	slot	at		𝑥 = 0	,	as	shown	below:	
	

	
	
In	this	situation,	the	conservation	of	momentum	was	applied.	
	

Momentum	flow,								𝑚𝑉 = 𝜌 𝑉 ∙ 𝑛 𝐴𝑉 = 𝜌𝑉�𝐴𝑉	
	
	 	



The	momentum	flux	is	defined	as	the	momentum	flow	per	unit	area.	
	
We	could	simplify	it	as:	
	

Momentum	flux,				𝐽 = 𝜌 𝑢g
j�

��
𝑑𝑦 =

16
9
𝜌 𝜐i/g 𝑎�	

	
𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	

	
The	maximum	velocity	can	be	concluded	as:	
	

𝑢a^� = 0.4543
𝐽g

𝜌𝜇𝑥

i/�

	

	
We	may	define	the	width	of	the	jet	as	twice	the	distance		𝑦		where		𝑢 = 0.01𝑢a^�		:	
	

𝑊𝑖𝑑𝑡ℎ = 2𝑦 i% = 𝑏 = 21.8
𝑥g𝜇g

𝐽𝜌

i/�

	

	
	 	



The	mass	flow	rate	across	any	vertical	plane	is	given	by:	
	

𝑚 = 𝜌 𝑢
j�

��
𝑑𝑦 = 36𝐽𝜌𝜇𝑥 i/� = 3.302 𝐽𝜌𝜇𝑥 i/�	

	
which	is	seen	to	increase	with		𝑥i/�		as	the	jet	entrains	ambient	fluid	by	dragging	it	along.	
	
This	result	is	correct	at	large	𝑥		but	implies	falsely	that		𝑚 = 0		at		𝑥 = 0		,	which	is	the	slot		where	
the	jet	issues.	
	
The	reason	is	that	the	boundary	layer	approximations	fail	if	the	Reynolds	number	is	small,	and	the	
appropriate	Reynolds	number	here	is	:	
	

𝑅𝑒 =
𝑚
𝜇
	

	
Thus,	the	solution	is	invalid	for	small	values	of	Reynolds	number	of	:	
	

𝑅𝑒 =
𝐽𝜌𝑥
𝜇g
	

	
	 	



EFFECT	OF	PRESSURE	GRADIENT	
SEPARATION	AND	FLOW	OVER	CURVED	SURFACES	
	
All	solid	objects	traveling	through	a	fluid	(or	alternatively	a	stationary	object	exposed	to	a	moving	
fluid)	acquire	a	boundary	layer	of	fluid	around	them	where	viscous	forces	occur	in	the	layer	of	fluid	
close	 to	 the	 solid	 surface.	 Boundary	 layers	 can	 be	 either	 laminar	 or	 turbulent.	 A	 reasonable	
assessment	of	whether	the	boundary	layer	will	be	laminar	or	turbulent	can	be	made	by	calculating	
the	Reynolds	number	of	the	local	flow	conditions.	
	
Flow	separation	occurs	when	the	boundary	layer	travels	far	enough	against	an	adverse	pressure	
gradient	that	the	speed	of	the	boundary	layer	relative	to	the	object	falls	almost	to	zero.	The	fluid	
flow	becomes	detached	from	the	surface	of	the	object,	and	instead	takes	the	forms	of	eddies	and	
vortices.		
	
Boundary	layer	separation	is	the	detachment	of	a	boundary	layer	from	the	surface	into	a	broader	
wake.	Boundary	layer	separation	occurs	when	the	portion	of	the	boundary	layer	closest	to	the	wall	
or	leading	edge	reverses	in	flow	direction.	The	separation	point	is	defined	as	the	point	between	the	
forward	and	backward	 flow,	where	 the	shear	 stress	 is	 zero.	The	overall	boundary	 layer	 initially	
thickens	suddenly	at	the	separation	point	and	is	then	forced	off	the	surface	by	the	reversed	flow	at	
its	bottom.	
	
	 	



We	have	so	far	considered	flow	in	which	the	pressure	outside	the	boundary	layer	is	constant.	 If,	
however,	 the	pressure	 varies	 in	 the	direction	of	 flow,	 the	behaviour	of	 the	 fluid	may	be	 greatly	
affected.	
	
Let	 us	 consider	 flow	 over	 a	 curved	 surface	 as	 illustrated	 below.	 The	 radius	 of	 curvature	 is	
everywhere	large	compared	with	the	boundary	layer	thickness.	
	

	
	
	 	



As	the	fluid	is	deflected	round	the	surface,	it	is	accelerated	over	the	left-hand	section	until	at	position	
C,	the	velocity	just	outside	the	boundary	layer	is	a	maximum.	Here,	the	pressure	is	a	minimum.	
	
Thus,	from	A	to	C,	the	pressure	gradient		� 

��
		is	negative.	

	
The	net	pressure	force	on	an	element	in	the	boundary	layer	is	in	the	forward	direction.	
	
Beyond	point	C,	however,	the	pressure	increases,	and	so	the	net	pressure	force	on	an	element	in	the	
boundary	layer	opposes	the	forward	flow.	
	
At	point	D,	the	value	of		�¡

�¢
at	the	surface	is	zero.	

	
Further	downstream,	at	point	E,	the	flow	close	to	the	surface	has	actually	been	reversed.	The	fluid	
no	longer	able	to	follow	the	contour	of	the	surface,	breaks	away	from	it.	
	
This	breakaway	before	the	end	of	the	surface	is	reached	is	usually	termed	separation.	
	
It	first	occurs	at	the	separation	point	where		 �¡

�¢ ¢£¤
		become	zero.	

	
It	is	caused	by	the	reduction	of	velocity	in	the	boundary	layer,	combined	with	a	positive	pressure	
gradient.	
	 	



Separation	can	therefore	occur	only	when	an	adverse	(positive)	pressure	gradient	exists.	Flow	over	
a	flat	plate	with	zero	or	negative	pressure	gradient	will	never	separate	before	reaching	the	end	of	
the	plate,	no	matter	how	long	the	plate.	
	
In	an	 ideal	 fluid,	separation	from	a	continuous	surface	would	never	occur,	even	with	an	adverse	
pressure	gradient	because	there	would	be	no	friction	to	produce	a	boundary	layer	along	the	surface.	
	
The	line	of	zero	velocity	dividing	the	forward	and	reverse	flow	leaves	the	surface	at	the	separation	
point,	and	 is	known	as	 the	separation	streamline.	As	a	result	of	 the	reverse	 flow,	 large	 irregular	
eddies	are	formed	in	which	much	energy	is	dissipated	as	heat.	
	
Separation	occurs	with	both	 laminar	and	 turbulent	boundary	 layer.	However,	 laminar	boundary	
layers	are	much	more	prone	to	separation	that	turbulent	ones.	This	is	because	in	a	laminar	boundary	
layer,	the	increase	of	velocity	with	distance	from	the	surface	is	less	rapid,	and	the	adverse	pressure	
gradient	can	more	readily	halt	the	slow-moving	fluid	close	to	the	surface.	
	 	



	
	
	

A	 turbulent	 boundary	 layer	 can	 survive	 an	 adverse	 pressure	 gradient	 for	 some	 distance	 before	
separating.	
	
For	any	boundary	layer,	however,	the	greater	the	adverse	pressure	gradient,	the	sooner	separation	
occurs.	The	boundary	layer	thickens	rapidly	in	an	adverse	pressure	gradient,	and	the	assumption	
that		𝛿		is	small	may	no	longer	be	valid.	
	 	



In	almost	all	cases	in	which	flow	takes	place	round	a	solid	body,	the	boundary	layer	separates	from	
the	surface	at	 some	point.	One	exception	 is	an	 infinitesimally	 thin	 flat	plate	parallel	 to	 the	main	
stream.	Downstream	of	the	separation	position	the	flow	is	greatly	disturbed	by	large-scale	eddies,	
and	this	region	of	eddying	motion	is	usually	known	as	the	wake.	
	
As	a	result	of	the	energy	dissipated	by	the	highly	turbulent	motion	in	the	wake,	the	pressure	there	
reduced	and	the	pressure	drag	on	the	body	is	thus	increased.	The	magnitude	of	the	pressure	drag	
depends	very	much	on	the	size	of	the	wake	and	this,	in	turn,	depends	on	the	position	of	separation.	
	
If	the	shape	of	the	body	is	such	that	separation	occurs	only	well	towards	the	rear,	and	the	wake	is	
small,	the	pressure	drag	is	also	small.	Such	a	body	is	termed	a	streamlined	body.	For	bluff	body,	on	
the	other	hand,	the	flow	is	separated	over	much	of	the	surface,	the	wake	is	large	and	the	pressure	
drag	is	much	greater	than	the	skin	friction.	

	
	 	



DEVELOPMENT	OF	WAKE	BEHIND	CYLINDER	
	
The	flow	pattern	in	the	wake	depends	on	the	Reynolds	number	of	the	flow.	
	

	
	 	



Figure	(a):	
For	very	low	Reynolds	number		 𝑅𝑒 < 0.5 		,	the	inertia	forces	are	negligible,	and	the	streamlines	
come	together	behind	the	cylinder.	
	
Figure	(b):	
If	Reynolds	number	increased	to	the	range	2-30,	the	boundary	layer	separates	symmetrically	from	
the	two	sides	at	the	positions	S.	Two	eddies	are	formed	which	rotate	in	opposite	directions.	At	these	
Reynolds	number,	they	remain	unchanged	in	position,	their	energy	being	maintain	by	the	flow	from	
the	separated	boundary	layer.	Behind	the	eddies,	however,	the	main	streamlines	come	together.	The	
length	of	the	wake	is	limited.	
	
Figure	(c):	
With	increase	of	Reynolds	number,	the	eddies	was	elongated	but	the	arrangement	is	unstable.	
	
Figure	(d):	
At	Reynolds	number	40-70,	for	a	circular	cylinder,	a	periodic	oscillation	of	the	wake	is	observed.	
Then,	at	a	certain	 limiting	value	of	Reynolds	number,	usually	about	90	 for	a	circular	cylinder	 in	
unconfined	 flow,	 the	eddies	break	off	 from	each	side	of	 the	cylinder	alternately	and	are	washed	
downstream.	This	limiting	value	of	Reynolds	number	depends	on	the	turbulence	of	the	oncoming	
flow,	on	the	shape	of	the	cylinder	and	on	the	nearness	of	other	solid	surfaces.	
	
	 	



	
	
In	 a	 certain	 range	 of	 Reynolds	 number	 above	 the	 limiting	 value,	 eddies	 are	 continuously	 shed	
alternately	from	the	two	sides	of	the	cylinder	and,	as	a	result,	they	form	two	rows	of	vortices	in	its	
wake,	the	centre	of	a	vortex	in	one	row	being	opposite	the	point	midway	between	the	centres	of	
consecutive	vortices	in	the	other	row.		
	
This	arrangement	of	vortices	is	known	as	a	vortex	street	or	vortex	trail.	
	
Von	 Karman	 considered	 the	 vortex	 street	 as	 a	 series	 of	 separate	 vortices	 in	 an	 ideal	 fluid	 and	
deduced	that	the	only	pattern	stable	to	small	disturbance,	and	then	only	if:	
	

ℎ
𝑙
=
1
𝜋
𝑎𝑟𝑐𝑠𝑖𝑛ℎ	1 = 0.281	

	
A	value	later	is	confirmed	experimentally.	
	
	 	



WAKE	OF	AN	AIRFOIL	
	
A	wake	is	the	defect	is	stream	velocity	behind	an	immersed	body	in	a	flow,	a	shown	below.	
	

	
	
	 	



Drag	force	can	be	written	as:	
	

𝐹« = 𝐶« ∙
1
2
𝜌𝐴𝑈g	

	
The	wake	velocity	may	be	written	as:	
	

𝑢i
𝑈¤

= 𝐶«
𝑅𝑒¬
16𝜋

i/g 𝐿
𝑥

i/g
𝑒𝑥𝑝 −

𝑈¤𝑦g

4𝑥𝜐
	

	
𝑢i = Defect	velocity	

𝑈¤ = Free	stream	velocity	
𝜐 = Kinematic	viscosity	of	fluid	

	
	
	 	



THE	CORRELATION	METHOD	OF	THWAITES	
	
From	Von	Karman	integral	relation,	we	can	rewrite	the	momentum	relation	in	the	more	compact	
form	as:	
	

	
𝜏°
𝜌𝑈g

=
𝐶±
2
=
𝑑𝜃
𝑑𝑥

+ 2 + 𝐻
𝜃
𝑈
𝑑𝑈
𝑑𝑥
	 (Eq.4-122)	

	 𝐻 =
𝛿∗

𝜃
	 	

	 𝜆 =
𝜃g

𝜐
∙
𝑑𝑈
𝑑𝑥
	 	

	 𝜐 = Kinematic	viscosity	 	
	
	 	



Multiply	the	momentum-integral	relation	by		¶·
k
	

𝑈𝜃
𝜐

𝜏°
𝜌𝑈g

	 =
𝑈𝜃
𝜐

𝑑𝜃
𝑑𝑥

+
𝑈𝜃
𝜐

2 + 𝐻
𝜃
𝑈
𝑑𝑈
𝑑𝑥
	 	

𝜏°𝜃
𝜇𝑈

	 =
𝑈𝜃
𝜐

𝑑𝜃
𝑑𝑥

+
𝜃g

𝜐
𝑑𝑈
𝑑𝑥

2 + 𝐻 	 (Eq.4-133)	

	
Now,		𝐻		and	the	left-hand	side	of	this	equation	are	dimensionless	boundary	layer	function.	Thus,	
by	assumption,	are	correlated	reasonably	by	a	single	parameter	(	𝜆		in	this	case).	Thus	we	assume,	
after	Holstein	and	Bohlen	(1940),	that:	
	

𝜏°𝜃
𝜇𝑈

≈ 𝑆 𝜆 	 Shear	correlation	 	

𝐻 =
𝛿∗

𝜃
≈ 𝐻 𝜆 	 Shape-factor	correlation	 	

	
And	further	note	that:	
	

𝜃𝑑𝜃 = 𝑑
𝜃g

2
	

	 	



Eq.4-133	may	thus	be	rewritten	as:	

	 𝑈
𝑑
𝑑𝑥

𝜆
𝑈′

≈ 2 𝑆 𝜆 − 𝜆 2 + 𝐻 = 𝐹 𝜆 	 (Eq.4-135)	

	
Whereas	 earlier	 workers	 would	 have	 proposed	 a	 family	 of	 profiles	 to	 evaluate	 the	 parametric	
functions	in	Eq.4-135,	Thwaites	(1949)	abandoned	the	favorite-family	idea	and	looked	at	the	entire	
collection	of	known	analytic	and	experimental	results	to	see	if	they	could	be	fit	by	a	set	of	average	
one-parameter	functions.	As	shown	in	Figure	4-22,	he	found	excellent	correlation	for	the	function		
𝐹 𝜆 		and	proposed	a	simple	linear	fit.	

	 𝐹 𝜆 ≈ 0.45 − 6.0𝜆	 (Eq.4-136)	

	
	 	



If		𝐹 = 𝑎 − 𝑏𝜆		,	Eq.4-135	has	a	closed-form	solution	which	the	reader	may	verify	as	an	exercise:	
	

	
𝜃g

𝜐
= 𝑎𝑈�» 𝑈»�i ∙ 𝑑𝑥 + 𝐶

�

�¼
	 (Eq.4-137)	

	
If		𝑥¤		is	a	stagnation	point,	the	constant		𝐶		mest	be	zero	to	avoid	an	infinite	momentum	thickness	
where		𝑈 = 0.	Thus,	Thwaites	has	shown	that		𝜃 𝑥 		is	predicted	very	accurately	(±3%),	for	all	types	
of	laminar	boundary	layers,	by	the	simple	quadrature.	
	

	 𝜃g ≈
0.45𝜐
𝑈¾

𝑈¿ ∙ 𝑑𝑥
�

¤
	 (Eq.4-138)	

	
Thwaites’	suggested	correlations	for		𝑆 𝜆 		and		𝐻 𝜆 		as	follows:	
	

	 𝑆 𝜆 ≈ 𝜆 + 0.09 ¤.¾g	 (Eq.4-140)	

	 𝐻 𝜆 ≈ 2.0 + 4.14𝑧 − 83.5𝑧g + 854𝑧� − 3337𝑧Â + 4576𝑧¿	 (Eq.4-141)	

	 𝑧 = 0.25 − 𝜆	 	

	
	


