
CHAPTER	4	
LAMINAR	BOUNDARY	LAYER	
	
Analysis	for	laminar	boundary	layer	on	thin	flat	plate	can	be	conducted	by	using	the	Von	Karman	
equation	and	/	or	Blasius	exact	solution.	
	
In	thin	flat	plate,	there	are	no	pressure	gradient	in	the	boundary	layer.	Because	of	that,	there	can	be	
no	separation.	
	
Flow	separation	or	boundary	layer	separation	is	the	detachment	of	a	boundary	layer	from	a	surface	
into	a	wake.	Separation	occurs	in	flow	that	is	slowing	down,	with	pressure	increasing,	after	passing	
the	thickest	part	of	a	streamline	body	or	passing	through	a	widening	passage.	
	
Flow	separation	occurs	when	there	is	a	change	of	velocity	or	pressure.	That	is	the	reason	why	there	
is	no	flow	separation	occurs	on	the	thin	flat	plate.	
	 	



An	image	to	show	the	separation	that	occur	on	the	cylinder	surface.	
	

	
	
	
	 	



From	the	previous	chapter,	we	know	that	the	maximum	velocity	for	flow	around	a	cylinder	is	at	90°	
or	at		 	𝜃 = !

"
		 .	The	distribution	of	velocity	and	pressure	for	the	upper	flow	of	the	cylinder	can	be	

shown	as	follows.	

	



	
	

	

	
	
	 	



Figure	7.7	illustrates	the	general	case.	In	a	favourable	gradient	(Fig.	7.7a)	the	profile	is	very	rounded,	
there	is	no	point	of	inflection,	there	can	be	no	separation,	and	laminar	profiles	of	this	type	are	very	
resistant	to	a	transition	to	turbulence.	
	
In	a	zero-pressure	gradient	(Fig.	7.7b),	such	as	a	flat-plate	flow,	the	point	of	inflection	is	at	the	wall	
itself.	There	can	be	no	separation,	and	the	flow	will	undergo	transition	at	Re	number	greater	than	
about	3	×	106.	

	
	



In	an	adverse	gradient	(Fig.	7.7c	to	7.7e),	a	point	of	inflection	(PI)	occurs	in	the	boundary	layer,	its	
distance	from	the	wall	increasing	with	the	strength	of	the	adverse	gradient.	For	a	weak	gradient	(Fig.	
7.7c)	 the	 flow	 does	 not	 actually	 separate,	 but	 it	 is	 vulnerable	 to	 transition	 to	 turbulence	 at	 Re	
number	as	low	as	105.		

	
	



At	a	moderate	gradient,	a	critical	condition	(Fig.	7.7d)	is	reached	where	the	wall	shear	is	exactly	
zero		_#$

#%
= 0	`.	This	is	defined	as	the	separation	point		(𝜏&'(( = 0	),	because	any	stronger	gradient	

will	actually	cause	backflow	at	the	wall	(Fig.	7.7e):	the	boundary	layer	thickens	greatly,	and	the	main	
flow	breaks	away,	or	separates,	from	the	wall	(Fig.	7.2b).	
	
The	flow	profiles	of	Fig.	7.7	usually	occur	in	sequence	as	the	boundary	layer	progresses	along	the	
wall	of	a	body.	For	example,	in	Fig.	7.2a,	a	favourable	gradient	occurs	on	the	front	of	the	body,	zero	
pressure	gradient	occurs	just	upstream	of	the	shoulder,	and	an	adverse	gradient	occurs	successively	
as	we	move	around	the	rear	of	the	body.	
	 	



A	second	practical	example	is	the	flow	in	a	duct	consisting	of	a	nozzle,	throat,	and	diffuser,	as	in	Fig.	
7.8.	The	nozzle	flow	is	a	favourable	gradient	and	never	separates,	nor	does	the	throat	flow	where	
the	pressure	gradient	is	approximately	zero.		
	
But	the	expanding-area	diffuser	produces	low	velocity	and	increasing	pressure,	an	adverse	gradient.	
If	 the	 diffuser	 angle	 is	 too	 large,	 the	 adverse	 gradient	 is	 excessive,	 and	 the	 boundary	 layer	will	
separate	at	one	or	both	walls,	with	backflow,	increased	losses,	and	poor	pressure	recovery.		
	
In	 the	 diffuser	 literature	 this	 condition	 is	 called	 diffuser	 stall,	 a	 term	 used	 also	 in	 airfoil	
aerodynamics	 to	 denote	 airfoil	 boundary	 layer	 separation.	 Thus,	 the	 boundary	 layer	 behaviour	
explains	why	a	large-angle	diffuser	has	heavy	flow	losses	and	poor	performance.	
	
Presently	 boundary	 layer	 theory	 can	 compute	 only	 up	 to	 the	 separation	 point,	 after	which	 it	 is	
invalid.	 Techniques	 are	 now	 developed	 for	 analysing	 the	 strong	 interaction	 effects	 caused	 by	
separated	flows.	
	



	
	 	



THE	CORRELATION	METHOD	OF	THWAITES	
	
Von	Karman	solution	can	be	used	for	laminar	and	turbulent	boundary	layer.	
However,	Blasius	solution	only	can	be	used	for	laminar	boundary	layer.	
Von	Karman	and	Blasius	used	for	flat	plat	problem	or	situation	that	does	not	have	pressure	gradient	
(separation	will	not	occur).	
	
For	curved	surface	(sphere	or	circular	surface),	there	is	a	pressure	gradient	and	flow	separation	
have	probability	to	occur.	In	this	case,	Thwaites	equation	is	proposed	to	be	used.	At	the	same	time,	
Thwaites	equation	could	predict	the	separation	point.	
	
From	Von	Karman	integral	method:	
	

𝜏& = 𝜌𝑈"
𝑑𝜃
𝑑𝑥 = 𝑐) ∙

1
2 𝜌𝑈

"	
	
	 	



Thwaites	proposed	this	correlation:	

𝜏&
𝜌𝑈" = 𝑐) ∙

1
2 =

𝑑𝜃
𝑑𝑥 +

(2 + 𝐻)
𝜃
𝑈
𝑑𝑈
𝑑𝑥	 Eq.(1)	

	
	
Where,	
	

𝜃(𝑥) = 𝜃 = Momentum	thickness	
	

𝐻(𝑥) = 𝐻 =
𝛿∗(𝑥)
𝜃(𝑥) = Shape	factor	

	

−
𝑑𝑈
𝑑𝑥 = +

𝑑𝑝
𝑑𝑥 = Adverse	gradient	

	
The	higher	the		𝐻		,	the	stronger	the	adverse	gradient,	and	separation	occurs	approximately	at:	
	

𝐻 ≈ 3.5	for	laminar	flow	
	

𝐻 ≈ 2.4	for	turbulent	flow	
	
	 	



	

	
	 	



For	laminar	flow,	a	simple	and	effective	method	was	developed	by	Thwaites,	who	found	that	Eq.(1)	
can	be	correlated	by	a	single	dimensionless	momentum	thickness	variable		𝜆		,	defined	as:	
	

𝜆 =
𝜃"

𝜐
𝑑𝑈
𝑑𝑥	

	
Using	a	straight-line	fit	to	his	correlation,	Thwaites	was	able	to	integrate	Eq.(1)	in	closed	form,	with	
the	result:	
	

𝜃" = 𝜃+" v
𝑈+
𝑈 w

,
+
0.45𝜐
𝑈, x 𝑈-𝑑𝑥

.

+
	

	
Where:	

𝜃+ = Momentum	thickness	at			𝑥 = 0	
	

𝜐 = kinematic	viscosity	
	
Separation	was	found	to	occur	at	a	particular	value	of		𝜆	:	
	

𝜆 = −0.09	
	
	 	



Finally,	Thwaites	correlated	values	of	the	dimensionless	shear	stress,		𝑆		with		𝜆		,	and	his	graphed	
result	can	be	curve-fitted	as	follows:	
	

𝑆(𝜆) =
𝜏&
𝜇𝑈 ≈

(𝜆 + 0.09)+.,"	

	
This	parameter	is	related	to	the	skin	friction	by	the	identity.	
	

𝑆 ≈
1
2𝐶) ∙ 𝑅𝑒0	

	
For	a	flat	plate,		𝑈 = constant,			𝜆 = 0,			𝜃+ = 0	
	

𝜃" =
0.45𝜐𝑥
𝑈 	

	
Or	
	

𝜃
𝑥 =

0.671
√𝑅𝑒

	

	
	 	



Thwaites	equation:	
	
	

𝜃! =
0.45𝜐
𝑈"

) 𝑈# ∙ 𝑑𝑥
$

%
	

	

𝜆 =
𝜃!

𝜐
𝑑𝑈
𝑑𝑥
	

	
	
	 	



EXAMPLE	
	
The	example	of	velocity	profile	for	a	laminar	boundary	layer	on	a	curved	surface	is	given	as:	
	

	
	 	



Let	say:	
	

𝑈(𝑥) = 𝑈 = 1 − 𝑥"	
	

𝑈- = 1 − 5𝑥" + 10𝑥1 − 10𝑥, + 5𝑥2 − 𝑥3+	
	
From	Thwaites	equation:	

𝜃" =
0.45𝜐
𝑈, x 𝑈-𝑑𝑥

.

+
	

	

𝜆 =
𝜃"

𝜐
𝑑𝑈
𝑑𝑥	

	
	 	



Solve	the	momentum	thickness	:	
	

𝜃" =
0.45𝜐
𝑈, x 𝑈-𝑑𝑥

.

+
=
0.45𝜐
𝑈, x (1 − 5𝑥" + 10𝑥1 − 10𝑥, + 5𝑥2 − 𝑥3+)𝑑𝑥

.

+
	

	

𝜃" =
0.45𝜐
𝑈, �𝑥 −

5
3𝑥

4 + 2𝑥- −
10
7 𝑥5 +

5
9𝑥

6 −
𝑥33

11�	

	
Assume	that	:	

𝐴 = �𝑥 −
5
3𝑥

4 + 2𝑥- −
10
7 𝑥5 +

5
9𝑥

6 −
𝑥33

11�	

	

𝜃" =
0.45𝜐
𝑈, �𝑥 −

5
3𝑥

4 + 2𝑥- −
10
7 𝑥5 +

5
9𝑥

6 −
𝑥33

11 �𝜃
" =

0.45𝜐𝐴
𝑈, 	

	
	 	



Solve	the	lamda	:	
	

𝜆 =
𝜃"

𝜐
𝑑𝑈
𝑑𝑥 =

0.45𝜐𝐴
𝑈,𝜐 ∙

𝑑𝑈
𝑑𝑥 =

0.45𝜐𝐴
𝑈,𝜐 ∙

𝑑
𝑑𝑥
(1 − 𝑥") =

0.45𝜐𝐴(−2𝑥)
𝑈,𝜐 =

−0.9𝑥𝐴
𝑈, 	

	
We	know	that	separation	occur	at	:	
	

𝜆 = −0.09	
	
Then,	we	could	calculate	the	value	of		𝑥		.	
	
Substitute	the	value	of		𝐴		:	
	

𝜆 =
−0.9𝑥
𝑈, �𝑥 −

5
3𝑥

4 + 2𝑥- −
10
7 𝑥5 +

5
9𝑥

6 −
𝑥33

11 �	

	
It	can	be	simplified	as	:	
	

𝜆 =
−0.9

(1 − 𝑥"), �𝑥
" −

5
3𝑥

1 + 2𝑥, −
10
7 𝑥2 +

5
9𝑥

3+ −
𝑥3"

11�	

	
𝜆 = −0.09					at					𝑥 = 0.268	

	 	



We	solve	this	by	using	excel	:	
	

	
	 	



	
	

	
	 	



A	THWAITES	METHOD	FOR	AXISYMMETRIC	FLOW	
	
A	flow	pattern	is	said	to	be	axisymmetric	when	it	is	identical	in	every	plane	that	passes	through	a	
certain	straight-line.	The	straight-line	in	question	is	referred	to	as	the	symmetry	axis.	
	
	

	
	
	 	



Thwaites	equation	for	axisymmetric	flow	becomes	like	this	:	
It	is	also	known	as	Rott-Crabtree	method.	
	
	
	

𝜃! =
0.45𝜐
𝑟%!𝑈"

) 𝑟%!𝑈#𝑑𝑥
$

%
	

	

𝜆 =
𝜃!

𝜐
𝑑𝑈
𝑑𝑥
	

	
	
	 	



EXAMPLE	
	
For	potential	freestream	flow	past	a	sphere,	the	velocity	distribution	is	given	as	:	
	

𝑈 = 1.5𝑈+ sin _
𝑥
𝑎`	

	
𝑟+ = 𝑎 sin _

𝑥
𝑎`	

	
𝑎 = Sphere	radius	

	
𝑥 = Stagnation	point	

	
𝑈+ = Inlet	velocity	of	stream	

	
	 	



𝑑𝑈
𝑑𝑥 =

𝑑
𝑑𝑥
(𝑈) =

𝑑
𝑑𝑥 _1.5𝑈+ sin _

𝑥
𝑎`` =

1.5𝑈+
𝑎 cos _

𝑥
𝑎`	

	
	

𝜃" =
0.45𝜐
𝑟+"𝑈,

x 𝑟+"𝑈-𝑑𝑥
.

+
	

	
𝜐 = Kinematic	viscosity	of	the	flowing	fluid	

	
𝜃"

𝜐 =
0.45
𝑟+"𝑈,

x 𝑟+"𝑈-𝑑𝑥
.

+
=

0.45

_𝑎 sin _𝑥𝑎``
"
_1.5𝑈+ sin _

𝑥
𝑎``

,x _𝑎 sin _
𝑥
𝑎``

"
_1.5𝑈+ sin _

𝑥
𝑎``

-
𝑑𝑥

.

+
	

	
	

𝜃"

𝜐 =
0.45

1.5𝑈+ sin _
𝑥
𝑎`

2x sin _
𝑥
𝑎`

5
𝑑𝑥

.

+
	

	
	 	



Determine	the	lamda	:	
𝑑𝑈
𝑑𝑥 =

1.5𝑈+
𝑎 ∙ cos _

𝑥
𝑎`	

	

𝜆 =
𝜃"

𝜐
𝑑𝑈
𝑑𝑥 =

0.45

1.5𝑈+ sin _
𝑥
𝑎`

2x sin _
𝑥
𝑎`

5
𝑑𝑥

.

+
			× 			

1.5𝑈+
𝑎 ∙ cos _

𝑥
𝑎`	

	
	

𝜆 =
0.45 cos _𝑥𝑎`

𝑎 sin _𝑥𝑎`
2 x sin _

𝑥
𝑎`

5
𝑑𝑥

.

+
	

	
	

𝜆 =
0.13 cos _𝑥𝑎`

sin _𝑥𝑎`
2 ��cos _

𝑥
𝑎`� �5 _cos _

𝑥
𝑎``

,
− 21 _cos _

𝑥
𝑎``

1
+ 35 _cos _

𝑥
𝑎``

"
− 35� + 16�	

	
Assume			.

'
= 𝑋	

	

𝜆 =
0.13 cos(𝑋)
sin(𝑋)2

{[cos(𝑋)][5(cos(𝑋)), − 21(cos(𝑋))1 + 35(cos(𝑋))" − 35] + 16}	

	
	



Make	a	graph	
	

	
	 	



	

	
	 	



THE	PLANE	LAMINAR	WAKE	
FAR-FIELD	APPROXIMATION	
	
A	wake	is	the	defect	is	stream	velocity	behind	an	immersed	body	in	a	flow,	a	shown	below.	A	slender	
plane	body	with	zero	lift,	such	as	the	airfoil	parallel	to	the	stream,	usually	produces	a	smooth	wake	
whose	velocity	defect		𝑢3		decays	monotonically	downstream.	
	

	
	 	



	

	
	 	



Drag	force	can	be	written	as:	
	

𝐹7 = 𝐶7 ∙
1
2 𝜌𝐴𝑈

"	
	
The	wake	velocity	may	be	written	as:	
	

𝑢3
𝑈+

= 𝐶7 v
𝑅𝑒8
16𝜋w

3/"
v
𝐿
𝑥w

3/"
exp �−

𝑈+𝑦"

4𝑥𝜐 �	

	
𝑢3 = Defect	velocity	

𝑈+ = Free	stream	velocity	
𝜐 = Kinematic	viscosity	of	fluid	

	
	
	
	 	



4-18	
Air	at	20°C	and	1	atm	flows	at	1	m/s	past	a	slender	two-dimensional	body,	of	length	L=30cm,	whose	
drag	coefficient	is	0.05	based	on	“plan”	area			𝑏𝐿	.	Assuming	laminar	flow	at	a	point	3	m	downstream	
of	the	trailing	edge,	estimate:	
(a) The	maximum	wake	velocity	defect	
(b) The	“one-percent”	wake	thickness	
(c) The	wake	thickness	Reynolds	number	

	
At	20°C:	 	 𝜌 = 1.205	kg/m4	 	 ,	 	 𝜇 = 1.81 × 10:-	kg/m ∙ s	
	
(a) Body	length	Re	number,	𝑅𝑒8	
	

𝑅𝑒8	 =
𝜌𝑢𝐿
𝜇 = 20,000 	

	
For	𝑥 = 3	m,	the	centerline	wake	defect	velocity	is	computed	by	applying	Eq	(4-112),	at	𝑦 = 0	
	

	 𝑢3
𝑈+

= 𝐶7 v
𝑅𝑒8
16𝜋w

3
";
v
𝐿
𝑥w

3
";
exp �−

𝑈+𝑦"

4𝑥𝜐 � = 0.315 	

𝑢3	 = (1)(0.315)	 	

𝑢3(𝑦 = 0)	 = 0.315	m/s = ∆𝑢<'.	 	
	 	



(b) Wake	half-thickness	could	be	defined	as	the	point	where	the	defect	velocity	drops	to	1%	of	its	
maximum	velocity.	

	
From	Gaussian	profile:	
	

exp $−
𝑈𝑦#

4𝜐𝑥+
	 = 0.01 	

−(𝑦)#$%	 =
ln(0.01) 4𝜐𝑥

𝑈
=
ln(0.01) 4𝑥𝜇

𝑈𝜌
	 	

(𝑦)$%	 = 0.0288	(m)	 	
	

wake	"half − thickness"	 =
(𝑦)$%
2

	 	

	 = 0.0144	(m)	 	

width, 𝑏	 = 2(𝑦)$% = 0.0288	(m)	 	
	
(c) Wake	Reynolds	number	
	

	𝑅𝑒	 =
𝜌∆𝑢&'(𝑏

𝜇
= 604 	

	
	 	



THE	PLANE	LAMINAR	WAKE	
AXISYMMETRIC	WAKES	
	
The	wake	defect	velocity	can	be	estimated	by:	
	

𝑢3
𝑈+

= 𝐶7 v
𝑈+𝐿
8𝜋𝜐w v

𝐿
𝑥w exp�−

𝑈+𝑟"

4𝑥𝜐 �	

	

	 	 	
	
	 	



4-41	
Air	at	20°C	and	1	atm	flows	at	1m/s	past	a	slender	body	of	revolution,	of	length	L=15cm,	whose	
drag	coefficient	is	0.008	based	on	area	(L2).	Assuming	laminar	flow	at	point	3m	downstream	of	the	
trailing	edge,	estimate:	
(a) The	maximum	wake	velocity	defect	
(b) The	one	percent	wake	thickness	
(c) The	wake	thickness	Reynolds	number	

	
𝜌 = 1.205	kg/m4	

𝜇 = 1.81 × 10:-	kg/ms	
𝜐 = 1.5 × 10:-	m"/s	

	
(a) Eq	(4-211)	
	

𝑢$
𝑈*
	 = 𝐶+ M

𝑈*𝐿
8𝜋𝜐

P M
𝐿
𝑥
P exp$−

𝑈*𝑟#

4𝑥𝜐 +
 	

	 𝑢$ = 𝑚𝑎𝑥	apabila	𝑒𝑥𝑝 = 1	 	

𝑢&'(	 =
𝐶+𝑈*#𝐿#

8𝜋𝜐𝑥
= 15.9	cm/s	 	

	 	



(b) 1%	thickness	occur	when	the	Gaussian	profile	in	Eq	4-210	equal	0.01	
	

exp $−
𝑈*𝑟#

4𝑥𝜐 +
	 = 0.01 	

𝑟 = (𝑟)$%	 = 0.0288	(m)	 	

	
Wake	thickness	
	

𝑏	 = 2(𝑟)$% = 5.76	(cm)	 	
	
(c)	
	

	 𝑅𝑒 =
𝑢&'(𝑏
𝜐

= 610 	

	
	
	 	



	
	

	 	





	
	
	
	


