CHAPTER 4
LAMINAR BOUNDARY LAYER

Analysis for laminar boundary layer on thin flat plate can be conducted by using the Von Karman
equation and / or Blasius exact solution.

In thin flat plate, there are no pressure gradient in the boundary layer. Because of that, there can be
no separation.

Flow separation or boundary layer separation is the detachment of a boundary layer from a surface
into a wake. Separation occurs in flow that is slowing down, with pressure increasing, after passing
the thickest part of a streamline body or passing through a widening passage.

Flow separation occurs when there is a change of velocity or pressure. That is the reason why there
is no flow separation occurs on the thin flat plate.



An image to show the separation that occur on the cylinder surface.




From the previous chapter, we know that the maximum velocity for flow around a cylinder is at 90°
orat 6 = g . The distribution of velocity and pressure for the upper flow of the cylinder can be
shown as follows.
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M FIGURE 9.11 Inviscid flow past a circular
cylinder: (a) streamlines for the flow if there were no viscous
effects, (b) pressure distribution on the cylinder’s surface, and
(c) free-stream velocity on the cylinder’s surface.
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Figure 7.7 illustrates the general case. In a favourable gradient (Fig. 7.7a) the profile is very rounded,
there is no point of inflection, there can be no separation, and laminar profiles of this type are very
resistant to a transition to turbulence.

In a zero-pressure gradient (Fig. 7.7b), such as a flat-plate flow, the point of inflection is at the wall
itself. There can be no separation, and the flow will undergo transition at Re number greater than
about 3 x 106,
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In an adverse gradient (Fig. 7.7c to 7.7e), a point of inflection (PI) occurs in the boundary layer, its
distance from the wall increasing with the strength of the adverse gradient. For a weak gradient (Fig.
7.7¢) the flow does not actually separate, but it is vulnerable to transition to turbulence at Re
number as low as 10°.
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At a moderate gradient, a critical condition (Fig. 7.7d) is reached where the wall shear is exactly

] .. : . . :
ZEero (ﬁ =0 ) This is defined as the separation point (7,,4; = 0 ), because any stronger gradient

will actually cause backflow at the wall (Fig. 7.7¢): the boundary layer thickens greatly, and the main
flow breaks away, or separates, from the wall (Fig. 7.2b).

The flow profiles of Fig. 7.7 usually occur in sequence as the boundary layer progresses along the
wall of a body. For example, in Fig. 7.2a, a favourable gradient occurs on the front of the body, zero
pressure gradient occurs just upstream of the shoulder, and an adverse gradient occurs successively
as we move around the rear of the body.



A second practical example is the flow in a duct consisting of a nozzle, throat, and diffuser, as in Fig,
7.8. The nozzle flow is a favourable gradient and never separates, nor does the throat flow where
the pressure gradient is approximately zero.

But the expanding-area diffuser produces low velocity and increasing pressure, an adverse gradient.
If the diffuser angle is too large, the adverse gradient is excessive, and the boundary layer will
separate at one or both walls, with backflow, increased losses, and poor pressure recovery.

In the diffuser literature this condition is called diffuser stall, a term used also in airfoil
aerodynamics to denote airfoil boundary layer separation. Thus, the boundary layer behaviour
explains why a large-angle diffuser has heavy flow losses and poor performance.

Presently boundary layer theory can compute only up to the separation point, after which it is
invalid. Techniques are now developed for analysing the strong interaction effects caused by
separated flows.
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THE CORRELATION METHOD OF THWAITES

Von Karman solution can be used for laminar and turbulent boundary layer.

However, Blasius solution only can be used for laminar boundary layer.

Von Karman and Blasius used for flat plat problem or situation that does not have pressure gradient
(separation will not occur).

For curved surface (sphere or circular surface), there is a pressure gradient and flow separation
have probability to occur. In this case, Thwaites equation is proposed to be used. At the same time,
Thwaites equation could predict the separation point.

From Von Karman integral method:

, do 1
Ty = pU a=cd-§pU



Thwaites proposed this correlation:

1 d6 dU
—=Cd'§=—x+(2+H)——x Eq(l)

Where,

6(x) = 6 = Momentum thickness

( )

The higher the H , the stronger the adverse gradient, and separation occurs approximately at:
H = 3.5 for laminar flow

H =~ 2.4 for turbulent flow
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For laminar flow, a simple and effective method was developed by Thwaites, who found that Eq.(1)
can be correlated by a single dimensionless momentum thickness variable A , defined as:

_HZdU
v dx

Using a straight-line fit to his correlation, Thwaites was able to integrate Eq.(1) in closed form, with
the result:

Up\® 0.45v [*
92=92<—°) + fUde
\u us J,

Where:
6, = Momentum thicknessat x =0

v = kinematic viscosity
Separation was found to occur at a particular value of A:

A=-0.09



Finally, Thwaites correlated values of the dimensionless shear stress, S with A , and his graphed
result can be curve-fitted as follows:

T
S(A) = =< =~ (1 + 0.09)062
ul

This parameter is related to the skin friction by the identity.
S = Cqs R
~5ta €o

For a flat plate, U = constant, A =0, 6, =0
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Thwaites equation:

0.45v (*
0% = f U° - dx
0

_HZdU
v odx



The example of velocity profile for a laminar boundary layer on a curved surface is given as:

TABLE 4-5
Laminar-separation-point prediction by Thwaites’
method
Thwaites

U(x) Xy (€xact) Xsep Error, %
Howarth (1938)

| — x 0.120 0.123 4+2.5
Tani (1949)

| — x?2 0.271 0.268 1.1

| — x* 0.462 0.449 -2.8

| — a8 0.640 0.621 —-3.0
Terrill (1960)

sin(x) 1.823 1.800 -1.3
Curle (1958)

x—x 0.655 0.648 —1.1
Gortler (1957)

cos(x) 0.389 0.384 -1.3

(1 — x)\/2 0.218 0.221 +1.3

(1 = x)? 0.0637 0.0652 +2.4

(1 +x" 0.151 0.158 +4.6

(1 + x)72 0.0713 0.0739 +3.6




Let say:
Ux)=U=1—x?
U>=1-—5x%+10x*— 10x° + 5x8 — x10

From Thwaites equation:

92 0.45v foSd
= X
Ue 0
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v odx



Solve the momentum thickness :
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Solve the lamda :

82 dU 0.45vA dU 0.45vA d (1— x?) = 0.45vA(=2x) —0.9xA
v dx  USv dx  USu dx )= Ubv RIC
We know that separation occur at:
A =-0.09
Then, we could calculate the value of x .
Substitute the value of A4 :
_ —0.9x 5 3, oS 10 +5 o x11
=ge (¥ T3¥ T - oxl gt m g
It can be simplified as :
—0.9 ey 10 N 5 0 x1?
~ (1 —x2)8 Xt x i K LT

A=-0.09 at x=0.268



We solve this by using excel :
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lamda
0
-9.0039E-05
-0.00036062
-0.00081317
-0.00145003
-0.00227456
-0.00329109
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1E-24
4E-21
5E-19
2E-17
2E-16
2E-15
1E-14
7E-14
3E-13
1E-12
3E-12
9E-12
2E-11
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7E-09
1E-08
2E-08
4E-08
6E-08
1E-07
2E-07
2E-07
4E-07
SE-07

K

5//3

0
2E-08
3E-07
1E-06
4E-06
1E-05
2E-05
4E-05
7E-05
1E-04
2E-04
2E-04
3E-04
5E-04
6E-04
8E-04
0.001
0.001
0.002
0.002
0.003
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01
0.012
0.014

L
2xM6

0
2E-12
1E-10
1E-09
8E-09
3E-08
9E-08
2E-07
5E-07
1E-06
2E-06
4E-06
6E-06
1E-05
2E-05
2E-05
3E-05
5E-05
7E-05
9E-05
1E-04
2E-04
2E-04
3E-04
4E-04
5E-04
6E-04
8E-04
1E-03
0.001
0.001

M

[\

10//7 5//9

0
1E-16
4E-14
9E-13
9E-12
6E-11
2E-10
8E-10
2E-09
6E-09
1E-08
3E-08
6E-08
1E-07
2E-07
4E-07
6E-07
1E-06
2E-06
2E-06
4E-06
5E-06
8E-06
1E-05
2E-05
2E-05
3E-05
4E-05
5E-05
7E-05
9E-05

0
6E-21
6E-18
3E-16
6E-15
5E-14
3E-13
2E-12
6E-12
2E-11
6E-11
1E-10
3E-10
8E-10
2E-09
3E-09
6E-09
1E-08
2E-08
3E-08
6E-08
9E-08
1E-07
2E-07
4E-07
5E-07
8E-07
1E-06
2E-06
2E-06
3E-06

o)

1//11

0
9E-26
4E-22
5E-20
2E-18
2E-17
2E-16
1E-15
6E-15
3E-14
9E-14
3E-13
8E-13
2E-12
5E-12
1E-11
3E-11
5E-11
1E-10
2E-10
4E-10
7E-10
1E-09
2E-09
3E-09
5E-09
9E-09
1E-08
2E-08
3E-08
5E-08



0.01
0.02
0.03

o -0.04
o -0.05
o
=

3 0.06
0.07
0.08
0.09

-0.1

0.05

0.1

0.15

0.2

0.25

0.3

X value



A flow pattern is said to be axisymmetric when it is identical in every plane that passes through a
certain straight-line. The straight-line in question is referred to as the symmetry axis.
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Thwaites equation for axisymmetric flow becomes like this :
[t is also known as Rott-Crabtree method.

0.45v

X
02 = f réUdx
T02U6 0 °

64 dU

A=
v dx



EXAMPLE

For potential freestream flow past a sphere, the velocity distribution is given as :

U = 15U, sin (g)

X
1o = asin (—)
a

a = Sphere radius
x = Stagnation point

U, = Inlet velocity of stream



du d d X 1.5U, X
I E(U) = E(l.SUO sin (E)) =— COS (E)
0.45v (*
02 =— e f TOZUSdX
5 U® Jo
v = Kinematic viscosity of the flowing fluid
6% 045 (* 0.45 x X\ 2 X\ 2
_ 2775 v — . (X (X
= r02U6fO rgU>dx = 6]() (a sin (a)) (1.5U0 sin (a)) dx

(wsn () (150050 ()

7

6% 0.45 X x
v 1.5U, sin(f)Sfo Sm(a) e
' a




Determine the lamda :

dU _ 1.5U0 . COS (x)

dx a a
0% dU 0.45 X xy? 1.5U X
Vs 15U, sin (E)gfo sin () ax x =g cos Q)

\ 0.45 cos (g) fx - (f)7 i
0

. (x)S a
asin\|\—
a

oo ) 5 ) ) -9

X
Assume - = X

A=

013 cos(X)

SN CX)° {[cos(X)][5(cos(X))® — 21(cos(X))* + 35(cos(X))? — 35] + 16}




Make a graph
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THE PLANE LAMINAR WAKE
FAR-FIELD APPROXIMATION

A wake is the defect is stream velocity behind an immersed body in a flow, a shown below. A slender
plane body with zero lift, such as the airfoil parallel to the stream, usually produces a smooth wake
whose velocity defect u; decays monotonically downstream.

Developed
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FIGURE 4-19
Flow in the wake of a body immersed in a stream.






Drag force can be written as:
1
FD - CD ' EPAUZ

The wake velocity may be written as:
“1_ - (ReL)l/z (L)l/z Upy?
Uy P\16n X P 4xv
u,; = Defect velocity

U, = Free stream velocity
v = Kinematic viscosity of fluid




4-18
Air at 20°C and 1 atm flows at 1 m/s past a slender two-dimensional body, of length L=30cm, whose
drag coefficientis 0.05 based on “plan” area bL . Assuming laminar flow at a point 3 m downstream
of the trailing edge, estimate:

(a) The maximum wake velocity defect

(b)  The “one-percent” wake thickness

(c) The wake thickness Reynolds number

At 20°C: p = 1.205 kg/m3 , pu=181x10">kg/m-s

(a) Body length Re number, Re;,
pulL
Re;, =——= 20,000
U
For x = 3 m, the centerline wake defect velocity is computed by applying Eq (4-112),aty =0
_¢ (ReL) (L)l/z Do) _ 0315
U, P\16n x) P 4xv |

u; = (1)(0.315)
u(y=0) =0.315m/s = Auy,

1/2




(b) Wake half-thickness could be defined as the point where the defect velocity drops to 1% of its
maximum velocity.

From Gaussian profile:

Uy?
exp —E = 0.01

5 In(0.01) 4vx In(0.01) 4xu
_(y) 1% — =
0 U Up

()19 = 0.0288 (m)

wake "half — thickness" =

_ (1%
2

= 0.0144 (m)
width, b = 2(y);9, = 0.0288 (m)

(c) Wake Reynolds number

_ PAUL D
U

Re = 604



The wake defect velocity can be estimated by:

ho_ (UOL) (L) Uor?
Uy P\8rv/ \x P 4xv

Flow Past a Sphere

Mach = 1.53 Mach = 4.01

Pictures are from “An Album of Fluid Motion™ by Van Dyke



4-41
Air at 20°C and 1 atm flows at 1m/s past a slender body of revolution, of length L=15cm, whose
drag coefficient is 0.008 based on area (L2). Assuming laminar flow at point 3m downstream of the
trailing edge, estimate:

(a) The maximum wake velocity defect

(b)  The one percent wake thickness

(c) The wake thickness Reynolds number

p = 1.205 kg/m3
p=1.81x10"°kg/ms
v=15%10"°>m?/s

(a) Eq (4-211)

Uy _C (UOL) (L) Uor?
Uy  P\8mu/ \x P 4xv

u; = max apabilaexp =1

CpUy*L?
Umax = = 15.9 cm/s
8mux




(b) 1% thickness occur when the Gaussian profile in Eq 4-210 equal 0.01

UOT'Z
exp| — = 0.01

4xv

r=(r)yy = 0.0288 (m)
Wake thickness
b = 2(r);y =5.76 (cm)

()

u b
Re = 22 =610












