Fluid Statics



Introduction

Fluid Statics: Study of fluids with no relative motion between fluid
particles.

No shearing stress (no velocity gradients)

Only normal stress exists (pressure)



Pressure At a Point

Pressure is an infinitesimal normal compressive force divided by the
infinitesimal area over which it acts.

From Newton’s Second Law (for x- and y-directions):
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As the element goes to a point (Ax, Ay 20)

Pressure at a point in a fluid.

Px =Py =P



Pressure At a Point

Px =Py =P

. Pressure in a fluid is constant at a point.

o Pressure is a scalar function.

S
T \
pPyAX
. It acts equally in all directions at a point for
Pressure at a point in a fluid. both static and dynamic fluids.



Pressure Variation
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Forces acting on an infinitesimal element that is at rest in the
Xyz -reference frame. The reference frame m: ay be accelerating or rotating.

Using Newton’s Second Law, pressures at each
of the sides:

dp = p dy
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The pressure at a face that is Ldx from the
center is:

The pressure differential in any direction would
be:

dp = —pa,dx — pa dy — p(a, + g)d:



Pressure

«  The pressure differential (from the previous slide) is:

dp = —pa.dx — pa,dy — p(a, + g)dz

- Atrest, there is no acceleration (a = 0):
dp = —pgdz

dp
d=

No pressure variation in the x- and y-directions (horizontal plane). Pressure
varies in the z-direction only (dp is negative if dz is positive).

.

Pressure decreases as we move up and increases as we move down.



Pressure

Pressure in Liquids at Rest

At a distance h below a free surface, the pressure is:

p=h

p=0ath=0.



Pressure

Pressure in the Atmosphere

The equation above shows that pressure varies with elevation (z).
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Pressure

The atmospheric pressure is given as 680 mm Hg at a mountain location. Convert this
to kilopascals and meters of water. Also, calculate the pressure decrease due to 500-m
elevation increase, starting at 2000 m elevation, assuming constant density.

Solution
Use Eq. 2.4.4 and find, using Sy, = 13.6 with Eq. 1.5.2,

P= ')’th
=(9.81 kN/m® X 13.6) X 0.680 m = 90.7 kPa

To convert this to meters of water, we have

h=-L
Yiy,
90.7
9.810

= 9.25 m of water

To find the pressure decrease, we use Eq. 2.4.3 and find the density in Table B.3:
Ap = —yAz = —pghz
= —1.007 kg/m® X 9.81 m/s* X 500 m = —4940 Pa

where we used kg = N -s¥m.

Note: Since gravity is known to three significant digits, we express the answer to three
significant digits.



Pressure

Assume an isothermal atmosphere and approximate the pressure at 10 000 m. Calculate
the percent error when compared with the values using Eq. 2.4.8 and from Appendix B.3.
Use a temperature of 256 K, the temperature at 5000 m.

Solution
Integrate Eq. 2.4.5 assuming that 7 is constant, as follows:
I 4 z
L G o J &
101 P RT Jo
P P £z = —gz/RT
In——=—— =101e7*#
0L R 0 At

Substituting z = 10 000 m and T = 256 K, there results

= 1019581 % 10000/(287 x 256)

P
= 26.57 kPa
Using Eq. 2.4.8 we have
3 T;) i glaR
P = Pam T,
9.81/0.0065 x 287
_ l01(288—0.02285X10000) — 26.3kPa

The actual pressure at 10 000 m is found from Table B.3 to be 26.50 kPa. Hence the per-
cent errors are

% error = (%) X 100 = 1.03%
T [%) X 100 = 0.26%

Because the error is so small, we often assume the atmosphere to be isothermal. Note:
When evaluating gz/RT we use R = 287 J/kg- K, not 0.287 kJ/kg-K . To observe that gz/R
is dimensionless, which it must be since it is an exponent, use N = kg- m/s® so that

[ £z ]___ (m/S)m _  m¥s? m?/s? _ m’/s
RT (J/kg-K)K N-m/kg (kg-m¥s’))kg m’s




Manometer

Manometers

- Manometers are instruments that use columns of liquid to measure
pressures.

- ’@
@Grhl

Pipe

Manometers: (a) U-tube manometer (small pressures): (b) U-tube manometer
(large pressures); (¢) micromanometer (very small pressure changes).

« Center: Large pressures can be measured using a liquid with large vs.

+ Right: Very small pressures can be measured as small pressure changes in
P4, leading to a relatively large deflection H.



Manometer

Water and oil flow in horizontal pipelines. A double U-tube manometer is connected
between the pipelines, as shown in Figure E2.3. Calculate the pressure difference between
the water pipe and the oil pipe.

5, =16

Solution

We first identify the relevant points as shown in the figure. Begin at point (D and add
pressure when the elevation decreases and subtract pressure when the elevation increases
until point®is reached. Using ¥ = ¥,..,, We have.

a+y(za —2) — Sz —22) — YSu(zs — 3) + ¥Sa(zs — ) =ps
wherey = 9810 Nlm’,s, =1.6,5, =0.9,and S,, = 0. Thus

250 275 150 150
P —Ps —9810(—m +l.6Xm +0Xm—0.9)(m]

=542Pa

Note that by neglecting the weight of the air, the pressure at point 3 is equal to the pres-
sure at point 4.



Manometer

For a given condition the liquid levels in Figure 2.7c are z; = 0.95m, z, = 0.70 m,
z; =0.52m, z;, = 0.65 m, and z; = 0.72m. Further, y, = 9810 N/m’, 7, = 11500 N/m?,
and y; = 14000 N/m>. The diameters are D = 0.2m and d = 0.01 m. (a) Calculate the
pressure p, in the pipe, (b) the change in H if p, increases by 100 Pa, and (c) the change in
h of the manometer of Figure 2.7a if # = 0.5 m of water and Ap, = 100 Pa.

Solution
(a) Referring to Figure 2.7c, we have

h=0.72 —0.70 = 0.02m
H=06-0.52=0.13m

Substituting the given values into Eq. (2.4.16) leads to

p=n(z —2) + vh+(ys — v)H
= 9810(0.70 — 0.95) + 11500(0.02) + (14000 — 11500)(0.13)
= —1898 Pa

(b) If the pressure p, is increased by 100 Pa to p; = —1798 Pa, the change in H is,
using Eq. 2.4.19,
207
—N + 2y, + 2y — ;) DYd’

2(20%) _
=0.0397 m
—9810 + 2(11 500) + 2(14 000 — 11 500) X 20° ———

AH =Ap

AH =100

Thus H increases by 3.97 cm as a result of increasing the pressure by 100 Pa.
(c) For the manometer in Figure 2.7a, the pressure p, is given by p = yh. Assume
that initially 4 = 0.50 m. Thus the pressure initially is

P = 9810 X 0.50 = 4905 Pa

Now if p, is increased by 100 Pa to 5005 Pa, / can be found:

p=7vh
2 5005 - w
=B - 22 _qs)10 ~.Ah = 0510 — 0.5 = 0.01
y _ 9810 o =

Thus an increase of 100 Pa increases / by 1 cm in the manometer shown in part (a),
25% of the change in the micromanometer.



Hydrostatic force on plane surface

Forces on Plane Areas

Inclined plane area
(view from above)

Force on an inclined plane area.

The total force of a liquid on a plane surface is:

F=|[ pdd

After knowing the equation for pressure (P = yh):

F= L‘yh dA

= ysina L ydA



Hydrostatic force on plane surface

Forces on Plane Areas

(view from above)

Force on an inclined plane area.

F =74 sina

h: Vertical distance from the free surface to the centroid of the area
pc: Pressure at the centroid



Hydrostatic force on plane surface

Free surface p=0 o ’
x

&a
F
h
1h »
Inclined plane area \‘\‘
\\ 4. V

\ ™\ Centroi

3 (&

(side view)

(view from above)

Force on an inclined plane area.

The center of pressure is the point where the resultant force acts:

Sum of moments of all infinitesimal pressure forces on an area, A, equals the
moment of the resultant force.



Hydrostatic force on plane surface

Free surface p=0 o ,
o
x

| o
Inclined plane area \ .\'p =X + ——
(side view) ‘“ G dy 5 14]

\\\\ C.P ) —_—
€ A / % o y(I + A7?)sina
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Inclined plane area —
(view from above) — I
= ) A —

Force on an inclined plane area. Ay

y: Measured parallel to the plane area to the free surface
- The moments of area can be found using:

1= s TR Y

I =T + 47 I, =1, + AX¥



Hydrostatic force on plane surface

A plane area of 800 cm X 800 cm acts as an escape hatch on a submersible in the Great
Lakes If it is on a 45° angle with the horizontal, what force applied normal to the hatch at the
bottom edge is needed to just open the hatch, if it is hinged at the top edge when the top edge
is 10 m below the surface? The pressure inside the submersible is assumed to be atmospheric.

{
450
o"’\

Figure E2.5

Solution
First, a sketch of the hatch would be very helpful, as in Figure E2.5. The force of the water
acting on the hatch is

F = yFA
=9810(10 + 0.4 X sin45°)(0.8 X 0.8) = 64560 N
The distance 7 is

y= h =10+0.4Xsin45°
sin45° sin45°

=14.542m

so that

I
)’,=y+3

3
—14.542 + 0.8 X 0.8°/12

(0.8 X 0.8) X 14.542

=14.546 m

Taking moments about the hinge provides the needed force P to open the hatch:

08P =(y, =V +04)F
14.546 —14.542 + 0.4
0.8

S

64560 = 32 610 N

Alternatively, we could have sketched the pressure prism, composed of a rectangular volume
and a triangular volume. Moments about the top hinge would provide the desired force.



Hydrostatic force on plane surface

Find the location of the resultant force Fof the water on the triangular gate and the force
P necessary to hold the gate in the position shown in Figure E2.6a. Neglect the weight
of the gate, as usual.

Water

530\
Gate

5m
Hﬂ{ P 2071 llm A
n, C.
| : —

:
:
N " —{1mp—

‘- w0 - f ()

Figure E2.6

Solution

First we draw a free-body diagram of the gate, including all the forces acting on the gate
(Figure E2.6c). The centroid of the gate is shown in Figure E2.6b. The y-coordinate of
the location of the resultant Fcan be found using Eq. 2.4.28 as follows:

F=2+5=17
=—+ —
V=, 77
2 X336
7 OS] =707l m

To find x, we could use Eq. 2.4.32. Rather than that, we recognize that the resultant
force must act on a line connecting the vertex and the midpoint of the opposite side since
each infinitesimal force acts on this line (the moment of the resultant must equal the
moment of its components). Thus, using similar triangles we have

X _ 2071
1 3
“x, =0.690m

The coordinates x, and y, locate where the force due to the water acts on the gate.
If we take moments about the hinge, assumed to be frictionless, we can determine the
force P necessary to hold the gate in the position shown:

IM,, =0
L 3AXP=(3-20T)F
=0.929 X yhA

=0.929 X 9810 X (7sin53°) X 3
where 7 is the vertical distance from the centroid to the free surface. Hence

P =50900N or 350.9kN



Hydrostatic force on curve surface

Forces on Curved Surfaces

Direct integration cannot find the force due to the hydrostatic pressure on a

curved surface.
A free-body diagram containing the curved surface and surrounding liquid

needs to be identified.

Water

Stop
Hinge Fy
\ \
. Curved
k surface

Forces acting on a curved surface: (a) curved surface; (b) free-body diagram of water and

gate; (c) free-body diagram of gate only.



Hydrostatic force on curve surface

Calculate the force P necessary to hold the 4-m-wide gate in the position shown in
Figure E2.7a. Neglect the weight of the gate.

(b)
The distance d,; is the distance to the centroid of the volume. It can be determined
e A by considering the area as the difference of a square and a quarter circle as shown in
i = s = Figure E2.7c, d, and e. Moments of areas yield
dy (A — 4) =04 — X4
l‘—.ldw |‘—’Jrl Gl X4 — x4,
L
© @ © A — 4
1X4—(4X237)Xw
Figure E2.7 = (4 ) =1.553m
=
Solution
The first step is to draw a free-body diagram. One choice is to select the gate and the water The distance d, = 1m. Because F is due to a triangular pressure distribution (see
directly below the gate, as shown in Figure E2.7b. To calculate P, we must determine Fj, Figure 2.9), d, is given by
E,, F,, d,, d,, and dj; then moments about the hinge will allow us to find P. The force )
components are given by 1
dy = 3(2) = 0.667m
F = yh4
=9810 X 1X(2x4)=T78480 N Summing moments about the frictionless hinge gives
F, = yhh4,
= 9810 X 2 X (2 X 4) = 156960 N 2.5P =d,F, + d,F, — d,F,
B = 1o 0.667 X 78.5 + 1 X 157.0 — 1.553 X 33.7
7 X2 L= =628 kN
= 9810 x 4(4 - ] =33700N 2.5



Hydrostatic force on curve surface

Rather than the somewhat tedious procedure above, we could observe that all the
infinitesimal forces that make up the resultant force (F,; + F,,) acting on the circular arc
pass through the center O, as noted in Figure 2.11c. Since each infinitesimal force passes
through the center, the resultant force must also pass through the center. Hence we could
have located the resultant force (F,; + F;,) at point O. If F, and F,; were located at O, F,
would pass through the hinge, producing no moment about the hinge. Then, realizing that
F,; = F and summing moments about the hinge gives

2.5P =2F,
Therefore,
P=2XM=62.8kN
2.5

This was obviously much simpler. All we needed to do was calculate F;; and then sum
moments!



Hydrostatic force on curve surface

Find the force P needed to hold the gate in the position shown in Figure E2.8a if P acts
3 m from the y-axis. The parabolic gate is 150 cm wide.

Fy P

dwﬂ

dy

Figure E2.8
Solution

A free-body diagram of the gate and the water directly above the gate is shown in
Figure E2.8b. The forces are found to be

F, = yha
=9810 X1X (2X1.5)=29430N
E, = y¥

2 Zyz 23
= 9810_[ 1 5%dy — 14715] Ly = 147152 = 19620N
o o

The distance d, is %(2) = 0.667 m since the top edge is in the free surface. The distance dj,
through the centroid is found using a horizontal strip:

2 1 2
J x(x/2)dy —J yrdy
0 _8Jo

5
PO o B e
I xdy - I y:dy
0 2 0
Sum moments about the hinge and find P as follows:
3P =d\F, + dyF,
= 0.667 X 29430 + 0.6 X 19620 .. P=10470 N



Bouyancy

Buoyancy (Archimedes’ principle)

- Buoyancy force on an object equals the weight of displaced liquid.

T

(a) (b) ()

Forces on a submerged body: (a) submerged body: (b) free-body diagram:
(c) free body showing the buoyant force F,.

Fy = y¥ siqicstiqua V is the volume of displaced fluid and W is the
weight of the floating object.

E,=W



Bouyancy

Buoyancy (Archimedes’ principle)

\ i cg
[

Forces on a floating object.

The buoyant force acts through the centroid of the displaced liquid volume.

An application of this would be a hydrometer that is used to measure the
specific gravity of liquids.
For pure water, this is 1.0



Bouyancy

Buoyancy (Hydrometers)

Ah

III?
&

l.O—-)—

"’." == Y’Dﬁltf #'

[N
.

Water

Heavy
substance

T Fa (a) (b)

- Hydrometer: (a) in water: (b) in an unknown liquid.
(. 1
Ah=—|1——
A S

X

Forces on a floating object.

The displaced height, h, can be found as shown in the above equation.
A: Cross-sectional area of the stem
Sx — YX

Ywater

For a given hydrometer, ¥ and A are fixed.




Bouyancy

The specific weight and the specific gravity of a body of unknown composition are desired.
Its weight in air is found to be 890 N, and in water it weighs 667 N.

Solution
The volume is found from a force balance when submerged as follows (see Figure 2.12¢):
T=W-F
667 = 890 — 9810¥ ~¥ =0.02273 m?
The specific weight is then
y=K = L = 39 155 N/m?
¥ 0.02273




Stability

Fy Fy
W
o SN
Rotation [ £ LN
Y G A
o€
Fg
(a) (b)

Stability of a submerged body: (a) unstable: (b) neutral: (c) stable.

Stability

Rotation | / N
v eC

(C)

In (a) the center of gravity of the body is
above the centroid C (center of
buoyancy), so a small angular rotation
leads to a moment that increases
rotation: unstable.

(b) shows neutral stability as the center
of gravity and the centroid coincide.

In (c), as the center of gravity is below
the centroid, a small angular rotation
provides a restoring moment and the
body is stable.



Stability

Stability
W , Fg -

) i R ’T' - The metacentric height GM is the
€ ,G\. ( \ 4 ,C\ distance from G to the point of
Y ) <43€ G/) intersection of the buoyant force before

‘ ki rotation with the buoyant force after
Fg Fg W rotation.
¥ "" - If GM is positive: Stable
Rnlallon*/ll/—.l’(;\c Rulallon‘/ './Irc_\| ° If G_M is negative: Unstable
L I G |
4 \1/
Fg W
(a) (b) (c)

Stability of a submerged body: (a) unstable; (b) neutral: (c) stable.



Stability

A 0.25-m-diameter cylinder is 0.25 m long and composed of material with specific weight
8000 N/m®. Will it float in water with the ends horizontal?

Solution
With the ends horizontal, I, will be the second moment of the circular cross section,

=£=1r><0.25'

i S = 0.000192 m*
64 64
The displaced volume will be
2
yo W _BO00 XX 025 X025 _ oo,
T 9810

The depth the cylinder sinks in the water is

depth=£ -0'—01=0204m

| S
]
020 m ——(:, 0102 m
0125 m
I
Figure E2.10

Hence, the distance CG, as shown in Figure E2.10, is

TG =0.125 — # =0023m
Finally,
GM = % —0.023 = —0.004m

This is a negative value showing that the cviinder will not float with ends horizontal. It

would undoubtedly float on its side.



Linearly Accelerating Containers

The pressure differential equation

dp = —pa.dx — pa,dy — p(a. + g)d=

When the fluid is at rest relative to a reference frame
that is linearly accelerating with horizontal (a,) and
vertical (a,) components:

Linearly accelerating tank.

dp =—padx —p(g +a,)d:z

As points 1 and 2 lie on a constant-pressure line:

— -

3 T2 a,

Xk + a,
1 K z

Where a is the angle that the constant-pressure line makes
with the horizontal.



Linearly Accelerating Containers

The tank shown in Figure E2.11a is accelerated to the right. Calculate the acceleration a,
needed to cause the free surface, shown in Figure E2.11b, to touch point A. Also, find p,
and the total force acting on the bottom of the tank if the tank width is 1 m.

_L Small air hole \T |4—I.1
02m Air
i N
A . N\ ay
Im Water Water \\‘
2m 2m a/ .\\'-\
B A B ¥ A
(a) (b)
Figure E2.11
Solution

The angle the free surface takes is found by equating the air volume (actually, areas since
the width is constant) before and after since no water spills out:

W= %(1.2.\')
x =0.667m

The quantity tan « can now be found. It is

e
0.667

Using Eq. 2.5.3, we find a, to be, lettinga, = 0,

a, = gtana
=9.81 X 1.8 =17.66 m/s®

We can find the pressure at B by noting the pressure dependence on x. At A, the
pressure is zero. Hence, Eq. 2.5.2 yields

Ps _¢ = —pa.(xp — X,)
ps = —1000 X 17.66(—2)

35300Pa or 35.3kPa

To find the total force acting on the bottom of the tank, we realize that the pressure
distribution is decreasing linearly from p = 35.3kPa at B to p = O kPa at 4. Hence, we
can use the average pressure over the bottom of the tank:

F=L;&Xarea

35300 + 0

3 X2X1=35300N



Rotating Containers

For a liquid in a rotating container (cross-section shown):

In a short time, the liquid reaches

|
|
it static equilibrium with respect to
(_ >y / p . L
Jlf pard: (' / (p+5F dr) (¢ +an) abaz the container and the rotating rz-
: ‘ . - Volume = r d@dr dz reference frame
I _— Element prdfd: déi? 160 _ déf
: o sin ‘7 = ‘T . . .
|t DI & Mo 2 Horizontal rotation will not affect
i r the pressure distribution in the
(a) (b)

vertical direction.

No variation in pressure with
respect to the 8-coordinate.

Rotating container: (a) liquid cross section; (b) top view of element.



Rotating Containers

| Between two points (r4,z4) and
: (ro,Z) on a rotating container, the
i w2 (p+2 a) v anavae static pressure variation is:
|
|
|

pdrdz \< /

Volume = r d@dr dz
Dl dfdz

! _— Element dei? . df _ dé

D/ o~ sin — = —
! : -’< z = o £ 2\ \
I—'I \ 6 p drdz P—p= IT(r{ —n) —pg(z2 —=z)
1 r e

(a) (b)

Rotating container: (a) liquid cross section: (b) top view of element.

If two points are on a constant-pressure surface (e.g., free surface) with point 1
on the z-axis [r; = 0]:

The free surface is a paraboloid of revolution.



Rotating Containers

The cylinder shown in Figure E2.12 is rotated about its centerline. Calculate the rotational

speed that is necessary for the water to just touch the origin O. Also, find the pressures
at 4 and B.

B | | I L
20 mm '-. . Air
¥ | g
R —
100mm| % I ;
|‘ I "t
. ! v
P |
i g
100 mm oi 100 mm
k_i_)"
Filgure E2.12

Solution

Since no water spills from the container, the air volume remains constant, that is,

ar*h=(xR*)H/2

o X 0.1 x002= %ﬂR’ % 0.12

where we have used the fact that the volume of a paraboloid of revolution is one-half that
of a circular cylinder with the same height and radius. This gives the value

R =57.7mm

Using Eq. 2.6.5 with r, = R, we have

w® X 0.0577*

=9.81 x0.12
2

s @ = 26.6 rad/s

To find the pressure at point 4, we simply calculate the pressure difference between
Aand 0. Using Eq. 2.6.4 withr, =r, = 0.1m,r, =r, = 0, and p, = p, = 0, there results

2 3 2
co= pw e 1000 kg/m® X (26.6 rad/s)

2 2

X 0.1°m? =3540 Pa or 3.54 kPa

using kg =N-s*/m. The pressure at B can be found by applying Eq. 2.6.4 to points 4 and
B. This equation simplifies to

Ps —Pa = —pglzs —24)
Hence

Ps = 3540 — 1000 kg/m’ X 9.81mf* X 0.12m =2360Pa or 2.36 kPa



Summary

Pressure variation in the vertical (z-direction) in a constant density fluid is:

Ap = —yA:z

The force on a plane would be:
F = yhA

Where h is the vertical distance to
the centroid of the area

The force is located a distance from the free-surface to the center of pressure:

I
Ay

Where I is the centroidal axis

-‘.P =7 +



Summary

In a container rotating with angular velocity, w, a constant-pressure surface is:

L.invn :

~0’} =g(z, - 2)
Point 1 is on the axis of rotation and
point 2 is on the constant-pressure

surface



