Fluids in Motion



Introduction

General equations of motion in fluid flow are very difficult to solve.
Need simplifying assumptions.
In some cases viscosity can affect flow significantly, whereas in others it can
be neglected.



Description of Fluid Motion

Lagrangian and Eulerian Descriptions of Motion

When describing flow fields, think of individual particles.

Each of these is considered to be a small mass of fluid with a large number of
molecules (occupying a small volume).

Incompressible Fluid: Volume doesn’t change in magnitude, but fluid may
deform.
Compressible Fluid: As the volume deforms, the magnitude changes.

Lagrangian Description: Description of fluid motion (position, velocity,
acceleration), where individual particles are observed as a function of time.
(X0,Y0,Z0,1), etc.
Becomes difficult as the number of particles becomes very large in simple fluid
flows.



Description of Fluid Motion

Lagrangian and Eulerian Descriptions of Motion

Eulerian Description: Description of fluid motion where the flow properties
are functions of both space and time.
In Cartesian coordinates, velocity: V = V(x, Y, z, t)



Description of Fluid Motion

Lagrangian and Eulerian Descriptions of Motion

STEADY FLOW: Flow quantities do not depend on time.
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Description of Fluid Motion

Pathlines, Streaklines, and Streamlines

Pathline: Locus of points traversed by a given particle as it travels in a field
of flow.

Streakline: An instantaneous line whose points are occupied by all
particles from a specified point.

Streamline: Line in the flow where the velocity vector of each particle on
the streamline is tangent to the streamline.



Description of Fluid Motion

Pathlines, Streaklines, and Streamlines

Pathlines underneath a wave in a tank of water. (Photograph by A. Wallet and F. Ruellan.
Courtesy of M. C. Vasseur.)

= Streaklines in the unsteady flow around a cylinder. (Photograph by
Sadatoshi Taneda. From Album of Fluid Motion, 1982, The Parabolic Press, Stanford,
California.)



Description of Fluid Motion

Pathlines, Streaklines, and Streamlines

X

Figure 3.3 Streamline in a flow field.

A streamline can be expressed as:
VXdr=0

As V and dr are in the same direction, the cross-product of these vectors is
zero.



Description of Fluid Motion

Pathlines, Streaklines, and Streamlines

Streamtube: A tube whose walls are streamlines.

As velocity is tangent to a streamline, no fluid crosses the walls of a
streamtube.

E.g., Pipes or open channels.

In a steady flow, pathlines, streaklines, and streamlines are all
coincident.



Description of Fluid Motion

Acceleration
- Acceleration is the derivative of velocity (with respect to
time). ] :
V =uwu + vj + wk
dv i :
i daVdx oVdy oVdz oV
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' Y= dx dt dy dt dz dt ot
Vi) V(t +df)

Fluid particle The same fluid particle
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Velocity of a fluid particle.



Description of Fluid Motion

Acceleration
The acceleration is:
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Description of Fluid Motion

Acceleration

The acceleration equation can be simplified as follows:

dv

\'n‘p D\

o A = —

v // oiis Dt
2 V(t +dt)

~ The same fluid particle

Fluid particle at time f + df

at time ¢ D d d d d
y e = e ) T e e
Dt ax ay dz ot

X

Velocity of a fluid particle.

The derivative is the “substantial derivative” or “material derivative.”



Description of Fluid Motion
Acceleration

If the observer’s reference frame is accelerating:
Acceleration of a particle relative to a fixed reference frame is needed.

d’S : dQ
A=a —_ + 20XV + X2 Xr) + —Xr
dt* dt
acceleration of Coriolis normal angular
reference frame acceleration acceleration acceleration

a: Acceleration given by the equation in a previous slide
V: Velocity vector of the particle

r: Position vector of the particle

Q: Angular velocity of the observer’s reference frame

If A = a, the reference frame is inertial: a reference frame that moves
with constant velocity without rotating.

If A # a, the reference frame is noninertial.



Description of Fluid Motion

Angular Velocity and Vorticity

As a fluid particle moves it may rotate or

G deform.
< In certain flows or regions, fluid particles
b ,
Particle v do not rotate.
B These are called irrotational flows.
y E.g., Flow outside a thin boundary
- +%qu layer on airfoils, flow around
s ] .
',) — submerged objects
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Description of Fluid Motion

Angular Velocity and Vorticity
Angular Velocity (Q): The average velocity of two perpendicular line
segments of a fluid particle.

Vorticity (w): Twice the angular velocity.
An irrotational flow has no vorticity.



Description of Fluid Motion
Angular Velocity and Vorticity

Substantial Derivative

Rectangular
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Substantial Derivative, Acceleration, and Vorticity
in Rectangular, Cylindrical, and Spherical
Coordinates



Description of Fluid Motion

Angular Velocity and Vorticity

s 1 ow _ av)
* 2 ay  6z) Angular Velocity about the x-axis
- 1{ou ow
»~ Moz ax. Angular Velocity about the y-axis
I v
Q. = ~(Qp + Q)
_1fov _ ou) Angular Velocity about the z-axis
3{ " T )



Description of Fluid Motion

Angular Velocity and Vorticity
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Description of Fluid Motion

Angular Velocity and Vorticity

G
_iﬁtﬂ & v i ES tv+&‘£ 1
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This tensor is symmetric, i.e.:
Exy = Eyx
8XZ = 8ZX



Description of Fluid Motion

The velocity field is given by V = 2x1 — yri m/s, where x and y are in meters and ¢ is in
seconds. Find the equation of the streamline passing through (2, —1) and a unit vector
normal to the streamline at (2, —1) at7 = 4s.

Solution
The velocity vector is tangent to a streamline so that V X dr = 0 (the cross product of two
parallel vectors is zero). For the given velocity vector we have, at t = 4s,

V X dr = (2x1 — 43) X (dxi + dvj) = (2x dy + 4y dx)k =0
where we have used 1 X } = k,i’ X 1=—k,and1 X1 = 0. Consequently,

or L —2£

¥ x

2xdy = —4ydx

Integrate both sides:
Iny=-2lnx + InC
where we used In C for convenience. This is written as
Iny=Inx?+ InC = In(Cx?)
Hence

y=C

At (2, —1) we find C = —4, so that the streamline passing through (2, —1) has the equation
xly=-4

A normal vector is perpendicular to the streamline, hence the velocity vector; using
n =n,+njwehaveat (2, —1)andz = 4s

Vi = (4i + 4j)-(ni +n,j) =0
Usingi-§=land§-]:=0, this becomes

L

4n, +4n, =0 ~n

Then, because n is a unit vector, n; + n, = 1 and we find that

_¥2 _
.n, = — and =
2 2

The unit vector normal to the streamline is written as

V2
2

n=1-n

(-1

- Pt
n-=



Description of Fluid Motion

A velocity field in a particular flow is given by V = 20»*1 — 20xyj m/s. Calculate the
acceleration, the angular velocity, the vorticity vector, and any nonzero rate-of-strain
components at the point (1, —1, 2).

Solution

We could use Eq. 3.2.9 and find each component of the acceleration, or we could use
Eq. 3.2.8 and find a vector expression. Using Eq. 3.2.8, we have

0
a=ua—v+ va—v+w%&+%i
ox dy z t

=20y*(— 20j) — 20xp(40yi —20xj)
=—800xy%1 — 400()” — x?y)]

where we have used # = 20)* and v = —20xy, as given by the velocity vector. All particles
passing through the point (1, —1, 2) have the acceleration

= —8001 m/s?

The angular velocity has two zero components:

REEITE

The non-zero z-component, at the point (1, —1, 2) is

The vorticity vector is twice the angular velocity vector:
o= ZOEI‘( = 60k rad/s

The nonzero rate-of-strain components are

1{dv | ou
= | — e —
o 2(6x ay]
= .%.(—ZOy + 40y) = =10 rad/s

_ dv
GD, = a—)‘
= —20x = —20 rad/s

The rate-of-strain tensor would be written as
0 —-10 0

—-10 -20 0
0 0 0

€. = rad/s

Y



Classification of Fluid Flows

One-, Two-, and Three-Dimensional Flows

Three-dimensional flow: The velocity vector
depends on three spatial coordinates:
V=V(,Y, z, t)

v

(V=0)

( "« Stagnation point: A point at which the fluid

Stagnation

point decelerates and comes to rest.

The figure above shows a three-

dimensional flow with & A three-dimensional flow can often be

stagnation point where the flow is approximated as a two-dimensional flow (a plane
normal to the plane surface flow)



Classification of Fluid Flows

One-, Two-, and Three-Dimensional Flows

AO____rL | () ) One-dimensional flow: The velocity vector depends on
= é one variable.
One-dimensional flow _ _ _ _ _
in a pipe u=u(r) A developed flow is one in which the velocity profile
doesn’t vary with respect to the space coordinate in the
y =55 direction of the flow.

- - A uniform flow is one in which the fluid properties are
One-dimensional flow tant ih
between parallel plates constant over tné area.

u=u(y) E.g., Relatively high speed flows in pipes, and flow in a
stream.



Classification of Fluid Flows

Viscous and Inviscid Flows

A fluid flow can either be a viscous flow or an inviscid flow.
Inviscid flow: Viscous effects do not significantly influence the flow.
Viscous flow: Effects of viscosity are important.

Edge of f/g ’ \

Boundary

Inviscid layer boundary —
layer

e, The main class of flows that can be modeled as
k%// inviscid flows are external flows.
N Flows that exist exterior to bodies.

Any viscous effects that (may) exist are confined to
a thin boundary layer.

Flow around an airfoil. The velocity in this layer is always zero at a fixed
wall (due to viscosity).



Classification of Fluid Flows

Viscous and Inviscid Flows

Boundary Edge of /\

Inviscid layer boundary o |
flow \

Flow around an airfoil.

The inviscid flow outside the
boundary layer in an external flow is
called the free stream.

Most of the time, boundary layers are very thin.

Can be ignored when studying flow around a
streamlined body.

Viscous flows include internal flows (flows in pipes
and conduits and in open channels).

Create losses and accounts for huge amounts of
energy for oil/gas transportation in pipelines.

No-slip condition results in zero velocity at the
wall, and the resulting stresses lead to these
losses.



Classification of Fluid Flows

Laminar and Turbulent Flows

Viscous flow is either laminar or turbulent.

Laminar flow: Flow with no significant mixing of particles but with significant

viscous shear stresses.

Turbulent flow: Flow varies irregularly so that flow quantities
(velocity/pressure) show random variation.

A “steady” turbulent flow is one in which the time-average physical

quantities do not change in time.

V(1)

(b)

Velocity as a function of time in a laminar flow: (a) unsteady flow:

(b) steady flow. (b) “steady™

(b)

Velocity as a function of time in a turbulent flow: (a) unsteady flow;
flow.



Classification of Fluid Flows

Laminar and Turbulent Flows

Whether a flow is laminar or turbulent depends on three parameters:
Length scale of flow field
Velocity scale of the flow
Kinematic viscosity

The Reynolds Number predicts the flow regime.

y L: Characteristic Length
T V: Characteristic Velocity
u: Kinematic Viscosity

U

If the Reynolds number is greater than the critical Reynolds number (Re >
Re. i) then the flow is turbulent {Laminar < Re,;; < Turbulent}



Classification of Fluid Flows

Laminar and Turbulent Flows

If the Reynolds number is greater than the critical Reynolds number (Re >
Re. i) then the flow is turbulent:

Rough-walled pipe: Re.;;= 2000

Parallel plates: Re.;= 1500

Flow on a flat plate: Re,;;= 3 x 105

Turbulent

Jx flow

% Laminar Transition \( ™~

. flow l' TR { X
I o] . '

a0 N <)

Xr

Boundary layer flow on a flat plate.



Classification of Fluid Flows

The 2-cm-diameter pipe of Figure E3.3 is used to transport water at 20°C. What is the
maximum average velocity that may exist in the pipe for which laminar flow is guaranteed?

-

]
Water @ 20°C

Figure E3.3

Solution

The kinematic viscosity is found in Appendix B to be v = 10~* m%s, the value used if
the temperature is not given. Using a Reynolds number of 2000 so that a laminar flow is
guaranteed, we find that

_ 2000v

D

_ 2000 X 107¢ m%s
- 0.02 m

V

=0.1m/s

This average velocity is quite small. Velocities this small are not usually encountered in
actual situations; hence laminar flow is seldom of engineering interest except for special-
ized topics such as lubrication. Most internal flows are turbulent flows, and thus the study
of turbulence gains much attention.



Classification of Fluid Flows

Incompressible and Compressible Flows

Flows can be classified as either compressible or incompressible:
Incompressible flows are those in which the density of each fluid particle is
constant. 1;_,: =0



Classification of Fluid Flows

Incompressible and Compressible Flows

Mach Number: A gas flow parameter that is the ratio of flow velocity to that
of the speed of sound.

_, V: Gas Speed
M= 1(- c: Wave speed ¢ = VkRT

If M < 0.3, flow is assumed to be incompressible.



The Bernoulli Equation

The Bernoulli equation states that for an inviscid fluid Assumptions
flow, an increase in fluid velocity causes a decrease in Inviscid flow (no shear
pressure or decrease in the potential energy of the fluid. stress)

Steady flow Z—: =0

Along a streamline
Constant density
Inertial reference frame

p2 p
T + r i gh = const

Between two points on the

V-_: o D, = ’,':2 P iy
same streamline: D P & = 5 5 gh,



The Bernoulli Equation

Another form of the equation (by dividing by g) is:

‘.1
1

l + =
2g

V: P>
+h=—+=+h
1 ﬁ,g ,y -

L

Pressure p, is called the static pressure (gage pressure).

2. Piezometric head is ’—’ + h and the total head is le+ h+ ‘i

3. The total pressure at a stagnation point (local ﬂwd veI00|ty is zero) is the Stagnation
pressure. p + p —=pr



—_—

The Bernoulli Equation

P P2
(static pressure) (total pressure) P2—-P

iy
(b) © %
-
v—»—oo O—J rear —__ )

! Pressure probes: (a) piezometer; (b) pitot probe; (c) pitot-static probe.

Static pressure
opening

\ 4

A piezometer (left) is used to measure static pressure.
A pitot probe (center) is used to measure total pressure.
a) Point 2 is a stagnation point.
A pitot-static probe (right) is used to measure the difference between total and static
pressure.



The Bernoulli Equation

Separated

Thin boundary :
- region

layer

separates

(a) (b)

Flow around a sphere at relatively large Reynolds numbers: (a) inviscid flow:
(b) actual flow.
Maximum pressure at stagnation points A and C (velocity is zero).
Maximum velocity (minimum pressure) at point B.

In an actual flow, near C, the boundary streamline leaves the boundary (separated
region).

* Pressure remains relatively low at the rear.

+ Leads to a relatively large drag force in the direction of the flow.



The Bernoulli Equation

y

Streamline

dh = % ds

R (radius of curvature)

The equation above shows how the pressure changes normal to the
streamline.

Ap: Incremental pressure change
An: Short distance
R: Radius of curvature

Pressure decreases in the n-direction.
Decrease is directly proportional to p and V2
Decrease is inversely proportional to R



The Bernoulli Equation

The wind reaches a speed of 144 km/h in a storm. Calculate the force acting on the
0.9 m X 1.8 m window of Figure E3.4 facing the storm. The window is in a high-rise

building, so the wind speed is not reduced due to ground effects. Use p = 1.27 kg/m®.
Bernoullis equation can be used in this situation since we can neglect viscous effects, and

steady flow occurs along a streamline at constant density (air is incompressible at speeds
below about 350 km/h). We calculate the pressure on the window selecting state 1 in the

free stream and state 2 on the window, as follows:

2 2

L7 +f= +&+%
2g £
P

0 pp'lz 0
L]
1.27 kg/m’ X 402m?/s?
= = = 1.016 kPa
2000
where we have used y =pg. h, =h, p, =0, and ¥, = 0. Multiply by the area and find
Figure E3.4 the force to be
Solution F=p4
The window facing the storm will be in a stagnation region where the wind speed is o =
brought to zero. Working with gage pressures, the pressure p upstream in the wind is zero. =1.016 X 0.9 X 1.8 = 1.646 kN
The velocity ¥ must have units of m/s. It is We recommend that you verify the units of N/m? on the pressure calculation above.
3
V= 144 x10 o _ 4omis

3600 s



The Bernoulli Equation

The static pressure head in an air pipe (Figure E3.5) is measured with a piezometer as
16 mm of water. A pitot probe indicates 24 mm of water. Calculate the velocity of the 20°C
air. Also, calculate the Mach number and comment as to the compressibility of the flow.

@ufsmmmo @ummﬂ,o

|1
S 20° air
@ 2]

Figure E3.5

Solution

Bernoulli’s equation is applied between two points on the streamline that terminates at
the stagnation point of the pitot probe. Point 1 is upstream and p, is the total pressure at
point 2: then, with no elevation change,

The pressure measured with the piezometer is p; = yh = 9810 X 0.016 = 157 Pa. We use
the ideal gas law to calculate the density:

4

88 w7
(157 + 101000) Pa

= = 1.203kg/m’
287KJ/kg K X (273 + 20)K g

where standard atmospheric pressure, which is 101000 Pa (if no elevation is given, assume
standard conditions), is added since absolute pressure is needed in the ideal gas law. The

velocity is then
2
"= 1/;(pr -

_ [2(0.024 X 9810 — 157) Pa o

\ 1.203 kg/m’
To find the Mach number, we must calculate the speed of sound. From Eq. 1.7.17 it is

¢ =kRT
= J1.4 X 287 kJ/kg-K X 293K = 343 m/s

The Mach number is then

Obviously, the flow can be assumed to be incompressible since M < 0.3. The velocity
would have to be much higher before compressibility would be significant.



The Bernoulli Equation

Bernoulli’s equation, in the form of Eq. 3.4.8, looks very much like the energy equation
developed in thermodynamics for a control volume. Discuss the differences between the
two equations.

Solution
From thermodynamics we recall that the steady-flow energy equation for a control volume
with one inlet and one outlet takes the form

. . V2 V2
0-Ww =m[T’+%+ﬁz +gzz]—m[71+%+ﬁ,+gzl]

This becomes, after dividing through by g,

V2 | 2
2 By =L B,
2 v 2¢ 7

where we have made the following assumptions:

No heat transfer (Q =0)

No shaft work (W, = 0)

No temperature change (i, = i, i.e., no losses due to shear stresses)
Uniform velocity profiles at the two sections

Steady flow

Constant density (y, = y,)

Even though several of these assumptions are the same as those made in the derivation of
the Bernoulli equation (steady flow, constant density, and no shear stress), we must not
confuse the two equations; the Bernoulli equation is derived from Newton’s second law
and is valid along a streamline, whereas the energy equation is derived from the first law
of thermodynamics and is valid between two sections in a fluid flow. The energy equation
can be used across a pump to determine the horsepower required to provide a particular
pressure rise: the Bernoulli equation can be used along a stagnation streamline to deter-
mine the pressure at a stagnation point, a point where the velocity is zero. The equations
are quite different, and just because the energy equation degenerates to the Bernoulli
equation for particular situations, the two should not be used out of context.



The Bernoulli Equation

Explain why a burr on the upstream side of the piezometer opening of Figure 3.18a will
result in a low reading of the pressure.

Phigh ‘ Piow

Flow

An exaggerated burr

Figure E3.7

Solution

A burr on the upstream side of the piezometer opening would result in a flow in the
vicinity of the burr somewhat like that shown in Figure E3.7. A streamline pattern would
develop so that a relatively high pressure would occur on the upstream side of the burr
and a relatively low pressure on the downstream side at the opening of the piezometer
tube. Consequently, since the center of the curvature of the streamline is in the vicinity of
the opening, a lower reading of the pressure would be recorded. If the burr were on the
downstream side of the opening, a higher pressure reading would be recorded.



Summary

The Eulerian description for acceleration is:

Vv A% Vv Vv
a =u(:’— +z-'a— +wa— + 8_
ax ay 0z at

For a flow in the xy-plane, a particle rotates with angular velocity:

1{ do ou
Q== — — —
E 2\ ox E)_}'J
This deforms with:
- s
C.im= ﬂ‘ en. — d_z‘ eu = ll a_ + ﬂ
dx T ay 2lox oy



Summary

Fluid flows can either be:
Steady or unsteady
Viscous or inviscid

Laminar, turbulent or free-stream
Incompressible or compressible

The Bernoulli equation is :

2 [:2 )
' +ﬂ+h,:q—-+£+h2
gy 2¢ v

rol*::

The pressure change normal to a streamline is:

Ap = —p%An

For a steady, inviscid, constant-
density flow along a streamline in an

inertial reference frame



