The Integral Forms of the
Fundamental Laws



The Three Basic Laws

The integral quantities in fluid mechanics are contained in the
three laws:

Conservation of Mass
First Law of Thermodynamics
Newton’s Second Law

They are expressed using a Lagrangian description in terms of a
system (fixed collection of material particles).

System at _

time ¢ o

System at
time [ + At

Example of a system in fluid mechanics.



The Three Basic Laws

CONSERVATION OF MASS: Mass of a system remains
constant.

D Integral form of the mass-conservation
EI pd¥ =0 equation. p = Density; d\-= Volume occupied
= by the particle

FIRST LAW OF THERMODYNAMICS: Rate of heat transfer to a

system minus the rate at which the system does work equals the
rate at which the energy of the system is changing.

Specific energy (e): Accounts for kinetic
0-W= EJ epd¥  energy per unit mass (0.5V2), potential
Dt Jop energy per unit mass (gz), and internal
energy per unit mass ().



The Three Basic Laws

NEWTON’S SECOND LAW: Resultant force acting on a
system equals the rate at which the momentum of the
system is changing. o

D In an inertial frame of reference.
3F = E“;’\’pdV

Moment-of-Momentum Equation: Resultant moment acting on a
system equals the rate of change of the angular momentum of the
system.

M= -Qj r X Vpd¥
Dt sys



The Three Basic Laws

Control Volume: A region of space into which fluid enters
and/or from which fluid leaves.
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Example of a fixed control volume and a system: (a) time 7: (b) time 7 + Az,



System-to-Control-Volume Transformation

Interested in the time rate of change of an extensive property to
be expressed in terms of quantities related to a control volume.

Involves fluxes of an extensive property in and out of a control
volume.

Flux is the measure of the rate at which an extensive property
crosses an area.



System-to-Control-Volume Transformation

AN

Control surface: The surface
area that completely encloses
the control volume.

Hlustration showing the flux of an extensive property.

° The flux across an element dA is:

7. Unit vector normal to dA (always
points out of the control volume)
n: Intensive property

flux acrossdA = npn-V dA

. Only the normal component of 7'V contributes to this flux.
Positive component means a flux out of the volume.
Negative component indicates a flux into the volume.
If the net flux is positive: Flux out > flux in



System-to-Control-Volume Transformation

Reynolds Transport Theorem

The Reynolds transport theorem is a system-to-control-volume
transformation.

DN,, d i S
Dr = E J.:“ np d¥ J.C s»1)pn~\ dA

This is a Lagrangian-to-Eulerian transformation of the rate of change of

an extensive quantity.
First part of integral: Rate of change of an extensive property in the control
volume.
Second part of integral: Flux of the extensive property across the control
surface (nonzero where fluid crosses the control surface).



System-to-Control-Volume Transformation

Reynolds Transport Theorem

DN,, d .
gt ¥ +J i-VdA
Dt (11 I:.\ e c s.np ;

An equivalent form of the control volume is:

DN,, [ .
S e —_— H-"-{-J- -VdA
Dt Jc_v o (pm )¢ cs.17pll 17

The time derivative of the control volume is moved inside the integral:

For a fixed control volume, the limits on the volume integral are independent
of time.



System-to-Control-Volume Transformation

* 4.3.1 Simplifications of the Reynolds Transport Theorem

- Steady-state (time derivative is zero):

- Often one inlet (A4), and one outlet (A,):

« For uniform properties over a plane area:

DN.,, d r |
el 1¥ + j n-VdA
e b
DA.' . - d ~
i Sl S ¥ + J -VdA
Dt Jc.v.‘:” n)e u'npll (
DN, a
— = -V IA
Dt Lﬂpn ‘
DN-,V, i { .
T =.L:173p1h dA — Jm"hP)"’l dA
DN_, r 4
—= = mp V24, —mp W4,

Dt



System-to-Control-Volume Transformation

* 4.3.1 Simplifications of the Reynolds Transport Theorem

DN,. d . :
=t 1¥ _[ iV dA
Df (1{ I{\np : i cvsA’np ;

DN,, [ d -
—tee L AT j VdA
Dt Jc.v ot (pn)¢ “npll :

Unsteady flow with uniform flow DN d(
New _ np) e e
properties: —= = K. —— t mplod, — npli4,

Dt v




Conservation of Mass

P D J pd¥ =0

Dt D: Mass of a system is fixed.

For a steady flow, this simplifies to:

[ pn-VdA =0

vC

Uniform flow with one entrance and one exit:
p AV, = p AV,

For constant density, the continuity
equation is only dependent on Aand V



Conservation of Mass

Nonuniform velocity profiles.

If the density is uniform over each area, with nonuniform

velocity profiles:
P L,V' dA = p, -[A:l“': dA p VA, = p,V., A, (averages can also be used)

~

The mass flux m (kg/s) is the mass rate of flow: 7 = I4 pV, dA

Where V,, is the normal component of velocity.



Conservation of Mass

>

Nonuniform velocity profiles.

-

The flow rate (or discharge) Q (m?/s) is the volume rate of flow: QO = | V. dA

vA

Mass flow rate is often used in compressible flow. The flow rate is often
used to specify incompressible flow.



Conservation of Mass

Water flows at a uniform velocity of 3 m/s into a nozzle that reduces the diameter from
100 mm to 20 mm (Figure E4.1). Calculate the water’s velocity leaving the nozzle and the

flow rate.

100 mm dia.

Figure E4.1
Solution
The control volume is selected to be the inside of the nozzle as shown. Flow enters the con-
trol volume at section | and leaves at section 2. The simplified continuity equation (4.4.6)
is used since the density of water is assumed constant and the velocity profiles are uniform:

AV, = 4V,
2
Vz = Vlﬁ =] LOIM =75 m/s
A, a % 0.02%4

The flow rate, or discharge, is found to be

0 = W4,
=3 X7 X 0.1°4 = 0.0236 m’5s



Conservation of Mass

Water flows in and out of a device as shown in Figure E4.2a. Calculate the rate of change
of the mass of water (dm/dr) in the device.

Scm

V, =10 m/s vice

iy = 4 Kgls
(a)

Figure E4.2

Solution
The control surface of the control volume selected is shown in Figure E4.2b. The continuity
equation (4.4.2), with three surfaces across which water flows, takes the following form:

= i I pdV+j pi-VdA
dt Jey. e,

dm
= ? — p AWV, + pr Vs + py AV,

where we have assumed the density to be constant over the volume and we have used
V; -l = =V, since i, points out of the volume, opposite to the direction of V;. The last
three terms come from the area integral. In terms of the quantities given, the above can
be expressed as

dm -
0= ? —p AV, + 1y +p0y

dm 0.04%
= — —1000kg/m*x | mx m* X 10 m/s + 4kg/s
dt [ 10000] 4

+1000kg/m* X (0.008) m*/s
This is solved to yield

% = 383 kgh

Hence the mass is increasing at the rate of 38.3 kg/s. To accomplish this, the device could
contain a spongelike material that absorbs water.



Conservation of Mass

A uniform flow of air approaches a cylinder as shown in Figure E4.3a. The symmetrical
velocity distribution at the location shown downstream in the wake of the cylinder is
approximated by

2
u(y)=1.25+yT “l<y<1

where u( y) isin m/s and y is in meters. Determine the mass flux across the surface 4B per
meter of depth (into the paper). Use p = 1.23 kg/m’.
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(a) (b)
Figure E4.3

Solution

Select A BCD as the control volume (Figure E4.3b). Outside the wake (a region of retarded
flow) the velocity is constant at 1.5 m/s. Hence the velocity normal to plane 4Dis 1.5 m/s.
No mass flux crosses the surface CD because of symmetry. Assuming a steady flow, the
continuity equation (4.4.3) becomes

0= Iup\’ ‘ndA

Mass flux occurs across three surfaces: 4B, BC, and AD. Thus the equation above takes
the form

0= L‘npv-ﬁd/! + L“pVﬁdA + L“pVﬁdA

=tives + || pu(y) 1 dy — pkgm® X 1.5m/s X Hm X Im

where the negative sign for surface AD results from the fact that the unit vector points
out of the volume to the left while the velocity vector points to the right. Recall that a
negative sign in the steady-flow continuity equation is always associated with an influx
and a positive sign with an outflux. Now, we integrate out to 1 m instead of H, since the
mass that enters on the left beyond 1 m simply leaves on the right with no net gain or loss.
So, letting H = | m, we have

1
0 = riep + J' 1.23[1.25 +-}§)dy —(123%1Xx1.5)
o

Perform the integration and there results

M = 0.205 kg/s per meter




Conservation of Mass

A balloon is being inflated with a water supply of 0.6 m¥s (Figure E4.4a). Find the rate
of growth of the radius at the instant when R = 0.5m.

Ag
S
05m
Vi Vi z_b
dR Ay
dt Ve
(a) (b)
Figure E4.4

Solution

The objective is to find dR/dt when the radius R = 0.5 m. This growth rate ¥, = dR/dt is
the same as the water velocity normal to the wall of the balloon. Therefore, we select as
our fixed control volume a sphere with a constant radius of 0.5 m (see Figure E4.4b) so
that we can calculate the velocity of the water at the surface at the instant shown moving
radially out at R = 0.5 m. The continuity equation is written as

0= '[“%dv 5 I pV -idA
o

The first term is zero because the density of water inside the control volume does not
change in time. Further, the water crosses two areas: the inlet area 4, with a velocity ¥;and
the remainder of the sphere surface 4, with a velocity V;. We will assume that 4, << 4.
The continuity equation then takes the form

0=—pd Vi +pAVy

Since the flow rate into the volume is 4,/; = 0.6 m*/s and 4, = 47 R* assuming that A, is
quite small, we can solve for¥;. AtR = 0.5m

AV, 0.6 m’/s
= = =0.191 m/
B 4xR* 4r X 0.5 m? ®
dR
s =0.191m/!
dt —_

‘We have used a fixed control volume and allowed the moving surface of the balloon to
pass through it at the instant considered. With this approach it is possible to model situ-
ations in which surfaces, such as a piston, are allowed to move.



Conservation of Mass

This example shows that there may be more than one good choice for a control volume.
We want to determine the rate at which the water level rises in an open container if the
water coming in through a 0.10-m? pipe has a velocity of 0.5 m/s and the flow rate going
out is 0.2 m*/s (Figure E4.5a). The container has a circular cross section with a diameter
of 0.5 m.

"""""""" C.5.

(b)

Figure E4.5

Solution
First we select a control volume that extends above the water surface as shown in
Figure E4.5a. Apply the continuity equation (Eq. 4.4.2):

L | pd¥ +p(H)A+pV A= 0
t oV,
in which the first term describes the rate of change of mass in the control volume. Hence,

neglecting the airmass above the water, we have

d(phmD*4)

T A +p0, =0

Divide by the constant p,

w D* dh
T?— A4+0,=0

The rate at which the water level is rising is then

dh _Vid - O
dt wD*4

Thus

ﬁ » (0.5% 0.1 — 0.2)m¥s
dt (m X 0.5%/4)m?

= —0.764 m/s

The negative sign indicates that the water level is actually decreasing.

Let’s solve this problem again but with another choice for the control volume, one
with its top surface below the water level (Figure E4.5b). The velocity at the top surface
is then equal to the rate at which the surface rises, i.e., dh/dt. The flow condition inside

the control volume is steady. Hence we can apply Eq. 4.4.4. There are three areas across
which fluid flows. On the third area, the velocity is dh/dt; hence the continuity equation
takes the form

dh
—V)A, + +p——D*=0
p(=V)A +p0; Pt
so that
ﬁ = WA, — Qz
dt wD*14

This is the same result as given above.



Energy Equation

This equation is required if heat is transferred
(boiler/compressor) or work is done (pump/turbine).

Can relate pressures/velocities when Bernoulli’s equation cannot
be used.

Q-W= % J ep d¥

sys
Where e is the specific energy and consists of the specific kinetic energy, specific potential
energy, and specific internal energy. 2

e +gz+u

-

In terms of a control volume: Q- W = ‘— ep d¥ + J peV-n dA

at Jew



Energy Equation

S ,
In terms of a control volume: € — W = = J.ep d¥ + j

art Jew. c.8

peV-n dA

Q: Rate-of-energy transfer across the control surface due to a temperature
difference.

W' Work-rate term due to work being done by the system.



Energy Equation

Work-Rate Term

The work-rate term is from the work being done by the system.
Rate of work (Power) is the dot product of force with its velocity.

i ~ The velocity is measured w.r.t. a fixed inertial
W = —F-V, reference frame. Negative sign is because work
done on the control volume is negative.

If the force is from variable stress over a control surface:
W =— _[ 7V, dA

T is a stress vector acting on an elemental area dA [A differential force].



Energy Equation

* Work-Rate Term

= I,_Pﬁ'\!dA W bk Wt W,

j pn-V d4 Work rate resulting from the force due to pressure moving at the control

surface. It is often referred to as flow work.

W, Work rate resulting from rotating shafts such as that of a pump or turbine,
or the equivalent electric power.

W,.. Work rate due to the shear acting on a moving boundary, such as a

moving belt.

W, Work rate that occurs when the control volume moves relative to a fixed
reference frame.



Energy Equation

General Energy Equation

From the previous equation, the energy equation can be rewritten as:

: : : : d p. .
== W =W —— ep d¥ -I—J e + —] n-VdA
= T g M e ( p )f

Losses are the sum of all terms for unusable forms of energy.

. / 2 ( A
losses = —Q + (T J ipdV + J iipV-ndA
at Jew. c.s

Can be due to viscosity (causes friction resulting in increased internal

energy).
Or due to changes in geometry resulting in separated flows.



Energy Equation

Steady Uniform Flow

For steady-flow with one inlet and one outlet (with uniform profile) and no
shear work, the following energy equation is used:

Where h, is the head loss (dimensions of length).

. - ; y? is the |
i, — it 0 e Where_K is the loss
h, = - 2¢ coefficient

g mg

2
V? is the velocity head, and gis the pressure head.



Energy Equation

Steady Uniform Flow

For steady-flow with one inlet and one outlet (with uniform profiles) and
no shear work, negligible losses, and no shaft work:

e Lt =1+ 4+ Almost identical to Bernoulli’s
& T i equation for a constant density flow.

The pump head, Hr is the energy term associated for a pump [1%. If a
turbine is involved, the energy term is called the turbine head.



Energy Equation

Steady Uniform Flow

If a turbine/pump is used, the efficiency of a device is needed, ny

The power generated by the turbine is:

W, =mgHm, =yQHn,

The power required by a pump is:

mgH, _ yOH,

W, =
My P

m=pAV

The power is calculated in
Watts



Energy Equation

Steady Nonuniform Flow

If a uniform velocity profile assumption cannot be used, the velocity
distribution should be corrected:
Using a kinetic-energy correction factor a
J. V3dA

Q= ==
VA

The term that accounts for the flux in kinetic energy is:

l p J V3 dd = l apV’A With V being the average velocity over area A
0, - ~ &
i A .

—

The final equation that account for this nonuniform velocity distribution is:

e
—

He+oz=+ 2 4z =H, +a,2= + £ 4z, +4,

|
2g vy 26 vy

[N

—_
|
&)
)
-
-



Energy Equation

The pump of Figure E4.6 is to increase the pressure of 0.2 m¥s of water from 200 kPa to
600 kPa. If the pump is 85% efficient, how much electrical power will the pump require?
The exit area is 20 cm above the inlet area. Assume inlet and exit areas are equal.

. 600 kPa
N7
200 kPa /ﬁj
@; ' pulq, J 20““

Figure E4.6

Y/

©

Solution
The energy equation (4.5.24) across the pump provides the energy delivered to the water
as a pump head:

HP = p2 —pl
Y
_ (600000 — 200 000)N/m’
9810 N/m’

where ¥, = V] since the inlet and exit areas are equal, and any losses are accounted for
with the efficiency of Eq. 4.5.26. That equation provides the power required by the pump:

Sl e

+02m=41.0m

W, = YQH;
Ne
_ 9810 N/m?* X 0.2m’/s X 41.0m
0.85

= 94600 J/s or 94.6 kW




Energy Equation

Water flows from a reservoir through a 800-mm-diameter pipeline to a turbine-generator
unit and exits to a river that is 30 m below the reservoir surface. If the flow rate is 3 m*/s,
and the turbine-generator efficiency is 88%, calculate the power output. Assume the loss
coefficient in the pipeline (including the exit) to be K = 2.

Figure E4.7

Solution

Referring to Figure E4.7, we select the control volume to extend from section 1 to section 2
on the reservoir and river surfaces, where we know the velocities, pressures, and elevations;
we consider the water surface of the left reservoir to be the entrance and the water surface
of the river to be the exit. The velocity in the pipe is

= -Q- = -—3—,- =597 m/s
A wx08/4
Now, consider the energy equation. We will use gage pressures so that p, = p, = 0; the
datum is placed through the lower section 2 so that z, = 0; the velocities ¥] and ¥; on the
reservoir surfaces are negligibly small; K is assumed to be based on the 800 mm-diameter
pipe velocity. The energy equation (4.5.24) then becomes

fodidonn b for

5.97% m¥/s*
Vi 7 o oy el L
T 772 % 9.8 mis?

~Hy =264m

From this the power output is found using Eq. 4.5.25 to be

Wy =3m/s® X 9810 N/m’ X 26.4 m X 0.88 = 684 kW

In this example we have used gage pressure; the potential-energy datum was assumed to
be placed through section 2, ¥ and ¥; were assumed to be insignificantly small, and K was
assumed to be based on the 762-mm-diameter pipe velocity.



Energy Equation

The venturi meter shown reduces the pipe diameter from 100 mm to a minimum of 50 mm
(Figure E4.8). Calculate the flow rate and the mass flux assuming ideal conditions.

Figure E4.8

Solution
The control volume is selected as shown such that the entrance and exit correspond to the

sections where the pressure information of the manometer can be applied. The manom-
eter’s reading is interpreted as follows:

Pa =Ps
P+y(z+12)=p, +yz +13.6y X 1.2

where z is the distance from the pipe centerline to the top of the mercury column. The
manometer then gives

BB - (136-1)x12=1512m
Y



Energy Equation

Continuity (4.4.6) allows us to relate V; to V] by

WA, = Va4,
V= eV = —T = 4
S O R :

The energy equation (4.5.17) assuming ideal conditions (no losses and uniform flow) with
h, = W, = 0 takes the form

2 __ 172 .
o= U Bl i 2

2g Y
2 __ 12
_Ih W 1510
2g
. ¥ =445m/s

The flow rate is

0 = AV, = (7w X 0.05%) X 4.45 = 0.0350 m¥s
The mass flux is

m = pQ = 1000 X 0.035 = 35.0 kg/s



Energy Equation

The velocity distribution for a certain flow in a pipe is V' (r) = V(1 — r?/r?), where r, is

the pipe radius (Figure E4.9). Determine the kinetic-energy correction factor. Using Eq. 4.5.27, there results

i dA = 2ar dr V3dA
E— T =
L) : -
g f va i .’ o° Vi (1 =22 2mrdr 16 % 32 3t 4
: il = 3 =—2J e st
; ( le) . e Jo R A
| | 2
' s aE 3 e 5
Figure E4.9 -gj—T’f?—; =
Solution
To find the kinetic-energy correction factor a, we must know the average velocity. Itis Consequently, the kinetic energy flux associated with a parabolic velocity distribution
(combine Eqs. 4.4.10 and 4.4.11) across a circular area is given by
VdA 2 . 772
i N 7 _
V=J PV fim—dd = 2 X T = 72
4 2 2
1 » r? 20V [ > R : . N
= — j Vou| 1 — = Rardr = 2 J r——|dr Parabolic velocity distributions are encountered in laminar flows in pipes and between
wry Jo % mh  Jo T

parallel plates, downstream of inlets and geometry changes (valves, elbows, etc.). The
oyl [ 2 7 ) _ ” Reynolds number must be quite small, usually less than about 2000.



Energy Equation

The drag force on an automobile (Figure E4.10) is approximated by the expression
0.15pV2 A, where A is the projected cross-sectional area and V, is the automobile’s speed.
If 4 =1.2m? calculate the efficiency n of the engine if the rate of fuel consumption f
(the gas mileage) is 15 X 10° km/m? and the automobile travels at 90 km/h. Assume that
the fuel releases 44 000 kJ/kg during combustion. Neglect the energy lost due to the
exhaust gases and coolant and assume that the only resistance to motion is the drag force.
Use p,, = 1.12kg/m® and py, = 680 kg/m’.

Figure E4.10

Solution
If the car is taken as the moving control volume (note that the control volume is fixed),
as shown, we can simplify the energy equation (Eq. 4.5.3 in combination with 4.5.11) to

0, =0



Energy Equation

since all other terms are negligible; there is no velocity crossing the control volume, so
Vi = 0 (neglect the energy of the exhaust gases); there is no shear or shaft work: the
energy of the c.v. remains constant. The energy input Q which accomplishes useful work
is 7 times the energy released during combustion; that is,

Q =1h, X 440007 kV/s

where 71, is the mass flux of the fuel. The mass flux of fuel is determined knowing the rate
of fuel consumption f* and the density of fuel as 680 kg/m’, as follows:

distance _ V. Xtme _ V. _ pl.
volume  Q Xtime i lp, iy
with ¥, = 90000/3600 = 25m/s, we have, using f = 15 X 10° m/m’,
680 x 25

ﬂlf
o thy =0.001133 kg/s

=

15 X108 =

The inertial work-rate term is

W, = V. X drag
=0.15p¥24 = 0.15 X 1.12 X 25° X 1.2 = 3150J/s
Equating Q = W,, we have

440009 x 0.001133 =3.15
-~ =0.0632 or 6.32%

This is obviously a very low percentage, perhaps surprisingly low to the reader. Very
little power (3.15kJ)/s = 4.22 hp) is actually needed to propel the automobile at 90 km/h.
The relatively large engine, needed primarily for acceleration, is quite inefficient when
simply propelling the automobile.

Note the importance of using a stationary reference frame. The reference frame
attached to the automobile is an inertial reference frame since it is moving at constant
velocity. Yet the energy equation demands a stationary reference frame allowing the energy
required by the drag force to be properly included.



Momentum Equation

General Momentum Equation

Newton’s second law (momentum equation): The resultant force acting on
a system equals the rate of change of momentum of the system in an
inertial reference frame.
D
3F = —j Vd¥
Pk

8ys

For a control volume: 3F = 4 pVd¥ + J pV(V-n)dA

(11 C.V. C



Momentum Equation

Steady Uniform Flow

If flow is uniform and steady, for N number of entrances and exits, the
previous equation can be simplified to:

3F = 2 p AV, (V,-

The momentum equation simplifies to:
EF —— p:A:l/:\'rz B plAlI/l \"vl Wlth ContInUIty: m = plAlI/] — p:A:l/E

2F=m(V, — V)

2F, =m(Vy, —

S B =V, — V.
H.orizontal nozzle SE =m(Vy. — V,.)
with one entrance

and one exit




Momentum Equation

Steady Uniform Flow

To determine the x-component of the force of the joint on the

nozzle:
SF=m(V, — V)
E— ’ SF, = —(F)m T 014, =—mV, As(Vq),=V;yand (V,),=0

Horizontal nozzle
with one entrance
and one exit



Momentum Equation

» Steady Uniform Flow

i T - To find the force of the gate on the flow:
LQ h, gk hy 2'F’\ = _F;gutc * E N E = 'ii(.Vl o I/l)
1’1'—‘%7":"‘1 : - — J """""" — V,
= '_ _________________________________________________ E<—' Fo= — yhA

Force of the flow on a gate in a free-surface flow.



Momentum Equation

Water flows through a horizontal pipe bend and exits into the atmosphere (Figure E4.11a).
The flow rate is 8.3x 10~ m¥s. Calculate the force in each of the rods holding the pipe
bend in position. Neglect body forces and viscous effects and shear force in the rods.

/

Flexible
section

(a) (b)
Figure E4.11

Solution

We have selected a control volume that surrounds the bend, as shown in Figure E4.11b.
Since the rods have been cut, the forces that the rods exert on the control volume are
included. The pressure force at the entrance of the control volume is also shown. The
flexible section is capable of resisting the interior pressure, but it transmits no axial force
or moment. The body force (weight of the control volume) does not act in the x- or
y-direction but normal to it. Therefore, no other forces are shown. The average velocities
are found to be

Before we can calculate the forces R, and R, we need to find the pressures p, and p,. The
pressure p, is zero because the flow exits into the atmosphere. The pressure at section 1
can be determined using the energy equation or the Bernoulli equation. Neglecting losses
between sections | and 2, the energy equation gives

0
V. n»n =V_f+71;z’
2g v 2g

9810
p— ZL(V:—VE) =
g

2Xx9.81

(7.52* —1.88%) = 26.5 kPa
Now we can apply the momentum equation (4.6.5) in the x-direction to find R, and in
the y-direction to find Ry: ,
x-direction: DAERI= m(V;- Vi)
26500 x%x 0.075* — R, = 1000 kg/m’ X (0.0083) m*/s (~1.88)m/s
R, =1326N

ydirection:  R,= Vs, ~V4)
= 1000 X (0.0083) X 7.52 = 62.4 N

Note that we have assumed uniform profiles and steady flow and used 71 = pQ. These are
the usual assumptions if information is not given otherwise.



Momentum Equation

When the velocity of a flow in an open rectangular channel of width w is relatively large, ~where we have expressed F| and F, using Eq. 2.4.24, and continuity in the form of Eq. 4.4.6,
it is possible for the flow to “jump” from a depth y, to a depth y, over a relatively short so that
distance, as shown in Figure E4.12a: this is referred to as a hydraulic jump. Express y, in :

terms of y, and ¥{; assume a horizontal uniform flow. = y_l 1
2

The above momentum equation can be simplified to

1 =
Y 2y 2 = )2
S S 2L = =pp PRl 22
Gl pu, > va ; e, 5, SOt —72) =en¥i =
— nlf—- . c.v. [ LOL:
g 34
T E(.Vn —n)Xn+ n)= lelz(yl —»)
(a) (b) Y2
Figure E4.12 The factor (33 — »,) is divided out and y, is found assuming y; and V] are known as
follows:
Solution g y,
A control volume is selected as shown in Figure E4.12b with inlet and exit areas upstream 3()’1 )= y—Vf
and downstream of the “jump” sufficiently far that the streamlines are parallel to the wall » :
with hydrostatic pressure distributions. Neglecting the drag that is present on the walls (if Ay, ——=wi2=0
b4

the distance between the sections is relatively small, the drag force should be negligible),

th t ti be ipulated as follows: 1 ’ 8
e momentum equation can be manipulated as follows A= E(_y' + 7+ ;J’nVnz

2F, =m(Vy, — Vi)
—F =pAWV(V, — W
=LAl ) where the quadratic formula has been used. The energy equation could now be used to

rovide an expression for the losses in the hydraulic jump.
v%(ylw) = Y%(J’zw) = pywV; [VI% = V.) : : :
2



Momentum Equation

Consider the symmetrical flow of air around the cylinder. The control volume, excluding
the cylinder, is shown in Figure E4.13. The velocity distribution downstream of the cylin-
der is approximated with the parabola, as shown. Determine the drag force per meter of
length acting on the cylinder. Use p =1.23 kg/m’.

A ¢
U, =30m/s n U, =30m/js

Figure E4.13

Solution

First, we must recognize that not all of the mass flux entering through A B exits through
CD; consequently, some mass flux must exit 4D and BC, as shown. The momentum
equation (4.6.2) for the steady flow, applied to the control volume A BCD, takes the form

—F = LJpV,V-ﬁdA = Lapu V-ndA + L‘Dpu V-ndAd + pru V-ndA
+ L‘pu V-ndA

= meusz + Upthyp+ Untitye — L‘pusz

2[ 12329+ 2
= : + =
.[o ( 100

2

2
J dy +2 X 30m,, —1.23 X 30* X 20

where 1= iy, is the mass flux crossing BC and 4D with the x-component veloc-
ity equal to 30 m/s. The limit of 10 m was used since at y = 10 m, the parabola gives
#(10) = 30 m/s. We have used Eq. 4.4.9 for m,, and ris. recognizing that V-n = V,,
which would be the small y-component velocity. We now use continuity to find i ,,:

0=L'pﬁ-VdA = prﬁ-VdA + L“_pﬁ-VdA +jbpﬁ-V dA + L"pﬁ-VdA
= My + Mige + 2j:°pu(y) dy —p X 20X 30

10 2
— +2J' 123% [ 29+ 2| dy — 1.23 x 20 x 30
0 100
o ng, = 8.2 kgls per meter of length

Evaluating the terms in the momentum equation above gives us

F =-21170 — 492 + 22140
=478 N/m



Momentum Equation

Find an expression for the head loss in a sudden expansion in a pipe in terms of ¥ and the
area ratio (Figure E4.14a). Assume uniform velocity profiles and assume that the pressure
at the sudden enlargement is p;.

@ e T R G
___________________________
b Vv, PaAs

—— e e ey e = = -

Y —  —— e —— e ———————— ————
bt PiA; EooooTSoS -
A 5] b Ryt
Ay @ Control volume
P
P2
(a) (b)
Figure E4.14

Solution

Figure E4.14a shows a sudden expansion with the diameter changing from d, to d,. The
pressure at the sudden enlargement is closest to p, since the streamlines are approximately
parallel as shown (there is no pressure variation normal to parallel streamlines); they take
some distance to again fill the pipe. Hence the force acting on the left end of the control
volume shown in Figure E4.14b is p; 4,. Newton’s second law applied to the control
volume yields, assuming uniform profiles,

3F, = iV, — V)
(pr — p2) Ay, = pAVL(V; — W)
3 —"';”’ = %% - W)

The energy equation (4.5.17) provides

2_yp2 _ 0
0= u+u+ﬂ+;&

2g Y
SIS i __sz—Vlz
sy
Pg 2g
_h(h-n) L+n)mnh-n) _(G-1)
g 2g 2g

To express this in terms of only ¥}, we can use continuity and relate
A

JE—=
2 Az

"

Then the expression above for the head loss becomes

e e v
= A,) 2g



Momentum Equation

Momentum Equation Applied to Deflectors

The momentum equation is often associated with deflectors in analysis of
turbomachines (turbines, pumps, and compressors).

There are two deflectors: fluid jets in stationary deflectors, and those
deflected by moving deflectors.

Assume

Pressure external to fluid jets is constant everywhere, so pressure in a fluid as it
moves over a deflector remains constant.

Negligible resistance due to fluid-deflector interaction.
Relative speed between the deflector surface and the jet stream is unchanged.

Lateral spreading of a plane jet is neglected.
Body force and weight of control volume is small and negligible.



Momentum Equation
Momentum Equation Applied to Deflectors [Stationary Deflector]

_— r < From Bernoulli's equation:
_.* V, =V, (Magnitude of velocity vectors are equal)
St - Pressure is constant external to the fluid jet (and

there are no changes in elevation).

A stationary deflector. (Assume no lateral spreading of the jet.)

Hence, for a steady and uniform flow, the momentum equation becomes:

—R, =m(Vscosa — V) =mV(cosa — 1)

R, = mV;sina = mV,sina



Momentum Equation

Momentum Equation Applied to Deflectors [Moving Deflectors]

Vg
vr:
v, y V,=V,-Vg Va
. . - y
"ﬂ = ‘ rl . ,/
i T V,, =V, — Vg =relative speed o ;: V,=Vg4V,
Liquid jet Vg Al /
\ B / - P p
| 1/ W r- LU A
\ | |/I pr % A (See footnote 2)
P— M S s <58, O iy e,
—p '& Va IRtfganvu.Iramg
— / | — ot > x  attached to the
deflector)

This fluid does not
change momentum

A moving deflector.

Can be either a single moving deflector (snowplow blade) or a series of
moving deflectors (turbine vanes).



Momentum Equation

Momentum Equation Applied to Deflectors [Moving Deflectors]

For a single deflector moving in the positive x-direction with the speed V;.

In a reference frame attached to a stationary nozzle, the flow is unsteady.
However, in a reference frame attached to the deflector, a steady flow is observed.

Hence, the momentum equation becomes:

—R_=m (V, — V,)(cosa — 1)

R, =m,(V, — Vp)sina

Where m,. is the mass flux exiting the fixed jet with a changed momentum.

m, =pAWV, — V)



Momentum Equation

* Momentum Equation Applied to Deflectors [Moving Deflectors]

. For a cascade of vanes:

Fixed jet

y

Time-average
position of
exiting jet

(b) (c)

Detail of the flow situation involving a series of vanes: (a) average position
of jet; (b) entrance velocity polygon: (c) exit velocity polygon.



Momentum Equation

Momentum Equation Applied to Deflectors [Moving Deflectors]

If all of the mass exiting the jet has a
changed momentum: B T N W -

P A S iR
R.\' — I"(I 2x Lx ) __________________________________
As the x-component of the force is related to the aing et a\

power output: v,

Found by multiplying this force by the blade speed for each jet
(N).

W = NRV,

Y-component force doesn’t move in the y-direction:
produces no power.



Momentum Equation

A deflector turns a sheet of water through an angle of 30° as shown in Figure E4.15. What
force components are necessary to hold the deflector in place if 11 = 32 kg/s?

Figure E4.15

Solution
The control volume we have selected includes the deflector and the water adjacent to it.

The only force that is acting on the control volume is due to a support needed to hold the
deflector. This force has been decomposed into R, and R,.

The velocity ¥ is found to be
Vl :i
pA

_ 32kg/s
1000 kg/m®  (0.002 X 0.4)m’

Bernoulli’s equation (3.4.8) shows that if the pressure does not change, then the magnitude
of the velocity does not change, provided that there is no significant change in elevation
and that viscous effects are negligible: thus we can conclude that ¥, = ¥, since p, = py.
Next, the momentum equation is applied in the x-direction to find R, and then in the
y-direction for R :

= 40 m/s

x-direction: -R, =m((V,,-V,)
= 32 kg/s (40 cos 30° — 40)m/s
~R=1712N
y-direction: R=m(V, —}’{;

=132 (40sin 30°) = 640N



Momentum Equation

The deflector shown in Figure E4.16 moves to the right at 30 m/s while the nozzle remains
stationary. Determine (a) the force components needed to support the deflector, (b) V, as

observed from a fixed observer, and (c) the power generated by the vane. The jet velocity
is 80 mk.

2mmx40mm Y, =V, -V,=0ms

Figure E4.16

Solution
(a) To solve the problem of a moving deflector, we observe the flow from a reference

frame attached to the deflector. In this moving reference frame the flow is steady and
Bernoulli’s equation with p, = p, can then be used to show that ¥, = ¥, = 50 m/s,
the velocity of the sheet of water as observed from the deflector. Note that we cannot
apply Bernoulli’s equation in a fixed reference frame since the flow would not be steady.
Applying the momentum equation to the moving control volume, which is indicated
again by the dashed line, we obtain the following:

x-direction:  —R =m, [(V,),—(V,)]
= 1000 kg/m’ X 0.002 m X 0.4 m X 50 m/s (50 cos 30° — 50)m/s
~ R, =268N
- 0
y-direction: R, =m[(V,),- (%y]

= 1000 % 0.002 X 0.4 X S0(50 sin 30°) = 1000 N

When calculating 71, we must use only that water which has its momentum changed:
hence the velocity used is 50 m/s.

(b) Observed from a fixed observer the velocity V, of the fluid after the deflection is

V, = V., + Vg, where V,, is directed tangential to the deflector at the exit and has a
magnitude equal to V,, (see the velocity diagram above). Thus
(V2), = V,5c0830° + V3
=50 X 0.866 + 30 = 73.3m/s
(V3), = V,,sin30°
=50 X 0.5 =25m/s

Finally,
V, = 73.3i + 25 mk

(c) The power generated by the moving vane is equal to the velocity of the vane times the

force the vane exerts in the direction of the motion. Therefore,

W ="V, xR =30m/s X 268N = 8040 W



Momentum Equation

High-speed air jets strike the blades of a turbine rotor tangentially while the
1.5-m-diameter rotor rotates at 140 rad/s (Figure E4.17a). There are 10 such
40-mm-diameter jets. Calculate the maximum power output. The air density is 2.4 kg/m’.
Neglect any lateral spreading.

Figure E4.17



Momentum Equation

Solution

The blade angle e is set by demanding that the air jet enter the blades tangentially, as
observed from the moving blade; that is, the relative velocity vector V, must make the
angle a; with respect to the blade velocity V. This is shown in Figure E4.17b. The relative
entrance velocity is V,; (Figure E4.17b), and the relative exit velocity is V,, (Figure E4.17c).
Both velocity polygons are presented by the vector equation

V=V, +V,

which states that the absolute velocity equals the relative velocity plus the blade velocity.
From the polygon at the entrance we have

VisinB, =V, sine
VicosB, = V, cosa; + V5
-~ 200 sin30° = ¥, siney
200 cos30° = ¥V, cosa; + 0.75 X 140

where V; is the radius multiplied by the angular velocity. A simultaneous solution yields

V,=12lmls a, = 55.7°

The friction between the air and the blade is quite small and can be neglected when calcu-
lating the maximum output. This allows us to assume ¥,, = ¥,,. From the exiting velocity
polygon we can write

Vs — Viacos a, = V;cos B,
V,,sin a, = V,sin B,
= 0.75 X 140 — 121 cos 30° = ¥V, cos B,

121 sin30° = ¥,sin B,

A simultaneous solution results in

V, =60.5m/s B, = 89.8°

The momentum equation applied to the control volume, shown in Figure E4.17d, gives
_Rx = ”.'(VZx - le)
=2.4kg/m® X 7 X 0.022m? X 200 m/s(60.5c0s89.8° — 200 cos 30°) m/s
s R, =1043N

There are 10 jets, each producing the force above. The maximum power output is then

power =10 X R, X V3

=10 X 104.3N X (0.75 X 140) m/s = 109600 W or 109.6kW



Momentum Equation

Momentum Equation Applied to Propellers

The momentum equation in a control

0 Aeat volume between sections 1 and 2 gives:
w F=mV, - 1)
év F i \_@

P _F i =y Since the areas A, and A, are not known,

1 ) S .
f another control volume is drawn close to
{ the propeller.

V3zV4 and A3 zA4 =A
A propeller in a fluid flow.

F+pA-pA=0
Neglecting viscous effects, and realizing that P, = P, = Py,

e~ + 278 _ g apd it + B8

2 p 2 p




Momentum Equation

Momentum Equation Applied to Propellers

The power input for this propeller is then:
@ Area A V; i VIZ

' — @/@ @ Wnuid = > m
v F /\_

— . = ¥,
e

The moving propeller requires power:

\

Streamline J Vprop =F X I/l

= wi(lV/ — V
A propeller in a fluid flow. m(V, — Vi)V,

=
|

Theoretical propeller efficiency: n, = mep
/7
flud

-
w Y



Momentum Equation

Control-Volume Analysis of Wind Turbines

A wind turbine extracts energy from the airflow.
Velocity downstream is reduced.
Diameter downstream is increased.

Convert wind power to mechanical power (and then to
electric power through electric generators).

Two main types: Vertical-axis and horizontal-axis wind turbines.

A typical
horizontal-axis
wind turbine.



Momentum Equation

Control-Volume Analysis of Wind Turbines

Power in a wind stream is equal to the rate of incoming kinetic energy of
the wind within a streamtube.

my;? With V, being the upstream wind velocity, and
m is the mass flow rate through the streamtube.

W =

r | —

m = pAV,

Hence, the available power for this turbine is:

. 1 2
W = =p4, v

The total energy, E, that is found by integrating the above equation over
a time period:

i : 1 I
E = J'H"'(II e pAJVWI
0 i 0

A typical
horizontal-axis
wind turbine.



Momentum Equation

o Control-Volume Analvsis of Wind Turbines

Streamtube
passingthrough = _ =TT Toos = T T i

propeller
. L N =l 3
Between a and b, the velocity of > >

. L Wind |—>|V,.Peo > Va.P

wind decreases as the kinetic 3
energy of the wind is converted i 4l
to mechanical work. Ao ZEetuENEEay 2

The streamtube containing the turbine.
. Between a section a distance upstream of the turbine (1) and at the inlet of the
turbine (a), Bernoulli's equation is used:
1 < ’ Assume:
p, + =pVy" =p, + —pV.° An adiabatic, incompressible flow
2 Negligible changes in potential energy



Momentum Equation

» Control-Volume Analysis of Wind Turbines

Streamtube
passing through o T~ T Vi
propeller _-T

Wind Wake Va,Poo

) NS

|

|

Yy 1

= 1

- |

~ 1
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I

1

I

1
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/
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[
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|
|
I
|
|
|
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The streamtube containing the turbine.

. Between a section a distance downstream of the turbine (2) and section b:

1 1 Assume:
p, + — pVb2 =p, + — pV;‘ An adiabatic, incompressible flow
2 2 Negligible changes in potential energy



Momentum Equation

Control-Volume Analysis of Wind Turbines

S I The pressure difference across the turbine (a and b):
pro\pcllcr‘ =il | S l . " l . :
el P Bsinrt soth )yt oells = Vo)
= Between points 1 and 2, the pressure is at ambient p; = p, = p..
kg [ The change in wind velocity across the turbine is negligible.
S e 1 : 3
Po — Dy = —p(Vy — V)
2
Turbine
wheel
Pu ll~ _——‘_"‘-—»-1__
o Y
\‘-, > v.' = " .
A \\ g B 2 Vo e
£ 7 =
| a b s
1 /| b 2 y
Distance x

Representative pressure and velocity profiles across a horizontal-axis turbine.



Momentum Equation

Control-Volume Analysis of Wind Turbines

The Force, F, on the turbine support is found using the
momentum equation across sections 1 and 2.

—F=mV, — V)

Between sections a and b:

—E g A=V, — V)

A'is the swept area of the turbine blades, and m = pV; A, with
V, being the average wind velocity across the turbine.

Hence, the wind power is:

3 l r ) 72 = 1 \ . )
W= —pAV(V2 = VD) W = 2pA(Vi + )R =~ V)



Momentum Equation

Control-Volume Analysis of Wind Turbines

_____________ The fluid cannot come to a complete stop at the turbine exit.

(o There is an optimum fluid exit velocity that results in maximum
= power.

Wake || V5, P

1

B V, = lV
=

Hence, the maximum power that can be extracted from the
wind turbine is:

Weax = ==p AV

)
\1|°°

The maximum efficiency (power coefficient) of the turbine is calculated as

follows: ;
- —pAV;?
W pAaY,
Nmax = 7 — — 217 = 0.593 or 59.3%
5pPA vy 5pPA i




Momentum Equation

A wind turbine with a rotor diameter of 50 m and is exposed to a 16 km/h wind at stan-
dard atmospheric conditions (100 kPa, 25°C). Calculate the following:

(a) The available wind power

(b) The maximum power that can be obtained from the wind

(¢) The maximum torque if the turbine rotates at 40 rpm

Solution 1 1
(a) The available power is i/ = —mV;? or W = —pA4V;>. The density of the air is
calculated as 2 4

RT 8314 X 298

The area swept by the rotor is 4 = w(25)* = 1963 m”. The wind velocity is

_Lex10?

"
3600

=4.44 m/s
and the available power is
W= %(1.17 kg/m® X 1963 m?)(4.47 m/s)’ = 103000W or 103 kW
(b) The maximum power that could be obtained is
Wosx = MWoagare= 0.593 X 103 = 61.1 kW

(¢) Torque is related to power by W = 2znT if n is measured in rpm. Then

W _ 61.1 X 10° N -m/s
27n (2w rad/rev) X 40 rev/60 s

T= =14600 N-m



Momentum Equation

The wind turbine considered in the previous example operates in a wind that has a velocity
pattern during a day that could be approximated by half a sine wave asV = V,, sin(rt/24),
where #is time in hours and V,, = 8.5 m/s. Calculate:
(a) The theoretical maximum wind turbine energy produced during a 24-hr period
(b) The wind mean energy velocity
(c) The electric energy generated during a 24-hr period if the overall efficiency of
the wind turbine-generator is 0.3 (the overall efficiency includes efficiency of the
generator and friction losses in the gear system used to couple the wind turbine to
the generator)
(d) If the wind turbine has a cut-in velocity of 3.1 m/s and a cut-out velocity of
8 m/s, calculate the theoretical maximum wind turbine energy during a 24-hr
period.
Solution
(a) The total wind energy during a 24-hr period is

o | ] M : :
E=zp4 j Vidi=2pa j [V,. sin(are/24) de
0 o

Integrating we get

o %Mm[cos’(m/u) ’ eos(m/m]"_ ; (32)

= S AVS
/8 wl24 pAYa

o

Using the density and area from previous example and ¢ = 24 hrs, we calculate
the energy

= %(l.lﬂ:glm’ X 1963 m?)(8.5 mls)’(ghr) = 7180 kW-hr
ks

The maximum wind energy is Ep,, = Mgy X E = 0.593 X 7180 = 4260 kW-hr
(b) The wind mean energy velocity can be calculated using

') e

s W 4260 X 10°

Voo = | 7 =
SpAde S(L17 X 1963 x 24)

=537 mls

(¢) The total electric energy generated during the 24-hr period is
E, =9, X E,, = 0.3 X 4260 = 1280 kW-hr



Momentum Equation

(d) In this case, we have to determine the time during the day when the wind turbine
is operational, that is the wind speed is between the cut-in and cut-out velocities.
Using the given expression for " we calculate the time during the day when
V =3.1mk as

h= gssin"(3.118.5) =285hr
T
where sin™(3.1/8.5) = 0.372 rad. Similarly, we calculate #, when ¥ = 8 m/s as
L= asin"(S/S.S) =94hr
T

To determine the total energy during the day we integrate between the above two
times. Note that since the wind velocity pattern is symmetrical with respect to
the 12-h during the day, the cut-in and cut-out times occur twice during the day.
Hence, we calculate the energy as follows:

i &
1 : 1 :
E= 5p,.a[z x! v dr] =S4 (2 X I[V_sm(mm)]’dr]

n

3 iy
S (N ”s(“””)] -i-pA V(2 X 2.602) = 3702 kW-hr

1 _
2 w8 w24 |

The maximum wind energy is

pAV.:[
E .. =7Nu X E=0.593 X 3702 = 2190 kW-hr
The electric power generated is
E, =9, XE,, =03 X 2190 = 658 kW-hr
In order to protect the wind turbine, generator, and gearing system from wear and

high forces, the wind turbine is designed to shut down when the wind velocity is below the
cut-in velocity and above the cut-out velocity.



Momentum Equation
Aerodynamic Analysis of a Rotating Wind-Turbine Blade

More detail into blade geometry is
needed as the flow through the wind
turbine is dependent on the airfoil.

Rotation
direction

Blade Profile characteristics

w: Angular speed

a: Angle of attack of the blade w.r.t.
Vﬁ[ % relative velocity of the wind

e B: Pitch angle between the chord line

and the plane of rotation of the rotor.

Relative velocity, V,

A rotating wind-turbine blade and a velocity triangle.

The lift and drag forces are calculated
using the relative velocity.

This vector is the velocity of the wind
relative to the airfoil.

V,=V, -V,



Momentum Equation

Aerodynamic Analysis of a Rotating Wind-Turbine Blade

From previous, the blade velocity is Vg =

wR, with w being the angular velocity of

the rotor and R the distance between the
center of rotation and the position on the
airfoil where the forces are determined.

V., is the free-stream velocity.

Rotation 2
direction

The relative velocity (from the triangle) is:

Relative velocity, V, Ve v, I/
Wind Velocity [ / — o

A rotating wind-turbine blade and a velocity triangle. r SlIl( 18 4 — B )




Momentum Equation

Aerodynamic Analysis of a Rotating Wind-Turbine Blade

A two-dimensional approach to find the lift/drag

(per unit length) is:

goans | "

Rotation tht torce: F} = ;CIPI/I-C
direction =
L~ 1 s
g Drag Force: F, = ;C,,pV,‘(‘
Relative velocity, V, } v
Wind Velocity

c: Chord length (distance from the nose to the tail)
A rotating wind-turbine blade and a velocity triangle. CL and CD are “ft and drag Coeﬁ:ICIentS

The normal/tangential forces and the coefficients are:

C\- — E\" C']‘ — P;
F, = F, cosa + F,sina ol

2 -

—pV? —oV2c
. 2pI, c 2pl,c
F, = F, sma — F; cosa

Cy = C,cosa + Cpsina

C; =C,sina — Cpcosa
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Aerodynamic Analysis of a Rotating Wind-Turbine Blade

The thrust/torque forces for a rotating blade and
the respective coefficients are found as:

F;hrusl i 1:‘1 COS(O‘ + B) 2z E) Sin(a +B)
Rotation
e Fiorge = Fsin(a + B) — Fj cos(a + B)
Fr
F rus FL‘ ue
Relative velocity, V, Y Clhrual a llh_ul erquc N l =
Wind Velocity ; pV,; c ; pV," c
A rotating wind-turbine blade and a velocity triangle. - -
Cthrusl = CI COS(_Q W B) 15 CI) Sln((l’ + B)
Clhrusl = CI Sin(_a + B) 5 CD COS(_(Y + B)

The torque (per unit length) on the blade is 7" = F X R

torque

The total torque is obtained by multiplying the torque of a single blade by the

number of blades. Hence the power:
N: Number of blades

P =N X2mwnT n: Rotational speed (rev/s)



Momentum Equation

A wind at 1 atm and 15°C is blowing at 20 m/s over a 10-m-diameter wind turbine that
has a cutout velocity of 15 m/s. In this case, since the wind velocity is higher than the
cutout velocity the rotor is “parked” (the rotor is locked so it is stationary) to prevent
damage to the wind turbine. At a location midway between the root and tip of the blade,
the chord length is 0.46 m, the angle of attack is 14°, and the lift and drag coefficients
are 0.93 and 0.74, respectively. Calculate the normal and tangential forces acting at
that location.

Solution
Since the rotor is stationary the relative velocity is equal to the free-stream wind velocity,
thatis V. = ¥, = 20 m/s. The air density is

) b 101 iz -
P=RT " OmmTx e kM
The lift and drag forces are calculated using
1 . _ 093 8 -
F, = EC,pV,c e X (1.23 kg/m*) X (20 m/s)* X 0.46 m = 105 N/m

F, = %CDpV,’c = °’—274 X (1.23 kg/m’) X (20 m/s)* X 0.46 m = 83.7 N/m

The normal and tangential forces are

F,, = F, cosa + F,sina = 105cos14 + 83.7sin14 = 122 N/m
F, =F,sina — F, cosa = 105sin14 — 83.7cos14 = —55.8N/m

The minus sign indicates that the force is acting in a direction opposite to that shown in
Figure 4.21. Note that in this case, F,,,, = F,and F ., = F,.



Momentum Equation

A three-bladed rotor wind turbine has a diameter of 10 m, is operating in a 7 m/s wind
at 1 atm and 25°C. The rotational speed is 72 rpm and the chord length is 0.46 m. At
a location on the rotor blade where the radial distance is 50% of the blade length, the
pitch angle is 9°, and the tangential and normal coefficients are 0.09 and 0.83, respec-
tively. If the blade has a uniform chord length, airfoil profile, and pitch angle, calculate
the torque and thrust force acting at that location. Then make an estimate of the torque
and the power produced assuming that the average value acts over the entire length of
the blade.

Solution
Since this is a rotating blade we calculate, using @ = 27 rad/rev X 1.2 rev/s = 7.54 rad/s
and R = 0.5 X 5 = 2.5 m, the relative velocity of the wind is

V, = V2 + (@R)* = /49 + (7.54 X 2.5 =20m/s
The local angle of attack is calculated using
a = sin"\(V,/V,) — B = sin™!(7/20) — 9° = 11.5°
We can determine the lift|and drag coefficients by manipulating Eqs. 4.6.49. The result is

C, = Cycosa + C;sina



Momentum Equation

The lift and drag coefficients can then be calculated to be
C,=0.83 cosl1.5 + 0.09 sin 11.5 = 0.831
C,=0.83 sinl11.5 — 0.09 cos 11.5 = 0.077
Next, we calculate the thrust and torque coefficients:

Cpue = Cy cos(a + B)+Cpsin(a + B) = 0.831 0s20.5 + 0.077 sin20.5 = 0.805
Coonue = Cy 8in(a + B) — Cpcos(a + B) = 0.831 sin20.5 — 0.077 cos20.5 = 0.219

The forces are calculated as follows

Fow = %Cmp e = 0.80> X (1.23 kg/m?) X (20 m/s)* X 0.46 m = 91 N/m
1 . 0.219 - -
Foge = ECmpV, c= == X (1.23 kg/m’) X (20 m/s)* X 0.46 m = 25 N/m



Momentum Equation

Assuming that these forces represent the average value over the entire blade length we
multiply by the blade length to get the total thrust and torque forces acting on a single
blade. The blade length is equal to the radius of the rotor, so the forces are

B Ol s = 4SSN
m

= 25-Iix5 m=125 N
m

F,

vorque
The torque acting on a single blade can then be estimated to be

T =Fpe XR=125NX2.5m =312 N-m
The power produced by the three blades on the rotor is approximately

P =N X2uaT =3X 2{72%"} X 312N-m = 7070 W
S

This is only an approximation because of the two-dimensional model used.



Momentum Equation

Steady Nonuniform Flow

For nonuniform velocity profiles, the momentum flux is:

J‘ V3 p 1 4= BI?Q Y B is the momentum-correction factor and is:
A JVz dA
B = V24
Through this, the momentum equation for a steady flow with one inlet
and one exit:

Laminar flow with a
parabolic profile in a
circular pipe has 3 = 4/3

>F =m(B,V, — BYV,)



Momentum Equation

Calculate the momentum correction factor for a parabolic profile (a) between parallel
plates of width w and (b) in a circular pipe of radius R. The parabolic profiles are shown
in Figure E4.22.

(b) A circular pipe

Figure E4.22




Momentum Equation

Solution
(a) A parabolic profile between parallel plates can be expressed as

vor-e(1-3)

where y is measured from the centerline, the velocity is zero at the walls where y = + h,
and V. is the centerline velocity at y = 0. First, let us find the average velocity. It is

'=ledA
A
h 2
il le—)_wdy=V£(h—lh)=3Vw
T 2 A 3°)° 3

where we have integrated over the top half of the cross-section. Then

jVZdA 2 J‘hV’ (1 ,,z]z _——
=== ax|1— | wdy =12
V2d Ay vohw %

where the factor “2” in the numerator accounts for the bottom half of the channel.

(b) For a circular pipe a parabolic profile can be written as
r2
A= |l ==
(r) w( e ]
where R is the pipe radius and ¥ = 0 at r = R. The average velocity is found to be

: J.RV 1- i 2mrdr = —l-V
wR* Jo ™ R? i

The momentum correction factor is then

7= l_[VdA =
y

V2dd x i
= J_z =5 l _[ V,g_,[l - iz] 2mr dr = 1.33
V4 VA wR: R

The correction factors above can be used to express the momentum flux across a cross-
sectional area as BpA V2.



Momentum Equation

Noninertial Reference Frames

Certain applications need a noninertial reference frame to measure velocity.
E.g., To study the flow from a rocket or turbine blade, or flow through a dishwasher arm

SF = EJ' pV d¥
Dt sys

+J- [ds +2\Q><V+\Q><(Q><r)+£><r}p d¥
sl At dt

The equation above is Newton’s Second Law.
V: Velocity relative to the noninertial frame.

Furthermore, the above equation can be rewritten as:
D
5F—-F, = —j Vd¥
! Dt sysp

d
dt

J‘ pVd¥ +f pV(V-n)dA

where F; (the inertial body force) is:

F; =J {d—§ +20XV+OQ X Xr)+ & Xr}pdV
sl Al dt



Momentum Equation

The rocket shown in Figure E4.23, with an initial mass of 150 kg, burns fuel at the rate
of 10 kg/s with a constant exhaust velocity of 700 m/s. What is the initial acceleration of
the rocket and the velocity after 1 s? Neglect the drag on the rocket.

AN

Il . ' \l Cs.
| |/

‘ Fuel
|
|
|
|
|

y
A\
v

——

Ve H(t)

Figure E4.23

Solution

The control volume is sketched and includes the entire rocket. The reference frame
attached to the rocket is accelerating upward at d>H/d:*. Newton’s second law is written
as, using z upward,

SE-(B), =< [ wa¥ +[ prvias

d*H
dr?

d
where -_ J V.d¥ = 0
dt .,.v.p 7

w5 _W S mo‘v. =p¢(_l/¢)’/¢Ac



Momentum Equation

since V. is the velocity of each mass element pd ¥ relative to the reference frame attached
to the control volume, the only vertical force is the weight W, and m_, is the mass of the
control volume. From continuity we see that

m,, = 150 — i = 150 — 10z
- W = (150 — 107) X 9.81

The momentum equation becomes

d*H

—(150 — 107)x9.81 — ?(150 —107) = —m V, = —10 X 700 = —7000
This is written as
2
&H 0 o
dr® 15—1¢

The initial acceleration is found by lettingz = 0:

d*H 700
= — — 9.81 = 36.9 m/s’
dr? 15

t=0

Integrate the expression for d> H/dt* and obtain

g =-—700In (15 —¢)-9.81t + C

The constant C = 700 In 15 since dH/dt = 0 at¢ = 0. Thus at ¢ = 1s the velocity is

AH _ 2001l — 9381 x1=38.5mk
dt 14 =



Moment-of-Momentum Equation

Needed to find the line of action of a given force component.

Needed to analyze flow situations in devices with rotating components (to relate
rotational speed to other flow parameters)



Moment-of-Momentum Equation

The general equation with attached inertial forces is:
D N
IM-M, = — J'mr X Vpd¥

where

[\'l, =Ir><|:%+20X\"+QX(QXr)+(il—QXr:|pdV
atr- t

M, is the inertial moment that accounts for
the noninertial reference frame.



Moment-of-Momentum Equation

When a system-to-control volume transformation is applied, the moment-of-
momentum equation becomes:

SM - M, = %j rXVpd¥ + j r X V(V-i)p d4

C.8.



Moment-of-Momentum Equation

A sprinkler has four 50-cm-long arms with nozzles at right angles with the arms and 45°
with the ground (Figure E4.20). If the total flow rate is 0.01 m*/s and a nozzle exit diameter
is 12 mm, find the rotational speed of the sprinkler. Neglect friction.

fin

2
|
(P

=
il / = A dr
! 50cm Vi

\ \ v
'\ . =
aQ r —’[}* 12 mm
Ve
=
Figure E4.24
Solution
The velocity exiting each nozzle shown is
K = 2
A
0.01/4

s e

where the factor 4 accounts for the four exit areas. Attach the reference frame to the
rotating arms as shown. Then, recognizing that r X [2 X (£ X r)] = 0 and assuming a

stationary sprinkler so that d*S/di* = 0 and constant angular velocity so that dQ/dr = 0,
we have

M= [ rx(2Q XV)pad¥
05 ~ ~ -
=4 _[o ri X (2Qk X Vi)pA dr
= 8pA vk j:'sr dr =pA vk

where the small mass of water in the end nozzles is neglected compared to that in the long
arms; the factor 4 again accounts for the four arms (each arm would provide the unit

vector k). Since there are no external moments applied to the sprinkler about the vertical
z-axis, 2M_ = 0. For the steady flow Eq. 4.7.3 provides

0
=ML~ (M,), = [ (r X V), V- p dd
—pAVQk =4[ _[0.5% X (0.707V k — 0.707V,i)] V.pdd

— VAQ = —4 X 0.5 X 0.707V2A4,
S0 = 4X0.5X0.707 X 22.1 = 31.25 rad/s

where we have used 4V = AV, from continuity considerations.



Moment-of-Momentum Equation

The nozzles of Example 4.24 make an angle of 0° with the ground and 90° with the arms.
The water is suddenly turned on at ¢ = 0 with the sprinkler motionless. Determine the
resulting )(¢) if the arm diameter is 24 mm. Neglect friction.

Solution
The reference frame is again attached to the rotating arms, as sketched in Example 4.24.
Referring to the control volume integral of Eq. 4.7.3, we observe thatr X V = 0 since r
is in the same direction as V along an arm. Thus Eq. 4.7.3, along with Eq. 4.7.2, takes
the form

0 05 i = = o = = =
}:}vi’— 4.[0 ri X[ZQk XVi+Qk X(Qk X ri)+%k Xri]pAdr

_ rixVEpdA+4J 0.5iX ¥, (= i)V.pda
d A

tJos

Perform the vector operations and divide by 4p,
0.5 05
—24VQ J' ol J P dr = —05V24,
0 dt 0

The required integration, using 4V = 4V, = 0.0l m’/s and ¥, = 2.21 m/s gives

ﬂ + 132.6Q = 5862
dt

This linear, first-order differential equation is solved by adding the homogeneous solution
(suppress the right-hand side) to the particular solution to obtain

Q1) = Ce 2% + 442



Moment-of-Momentum Equation

Using the initial condition 2(0) = 0, we find that C = —44.2. Then

Q1) = 44.2(1 — e~ 2%) rad/s

Observe that as time becomes large, the angular velocity is limited to 44.2 rad/s. If friction
were included, this value would be reduced. If 44.2 is multiplied by 0.707 to account for
the 45° angle, we obtain the value of Example 4.24.



Continuity

d )
0==| pa¥+ J' V.hdA
d’ IC '.p :.'.p n

0= j EEy

Summary

Energy

General Form

| y?
o . — — gz ¥
i dr.,:...( 2 E }” -

+ I (% - g +gz)pV-ﬁdA + losses

Steady Flow

2
-IW =I (VT + -s +gz)pV-idA + losses

Momentum

EF=%J. deV+j pV(V-i)dA

EF=I pV(V-h)dA



Summary

Steady Nonuniform Form!'
: - - -iW _ 2 = -
m = p,A\V, = p, AV, = o= +'&+-’-x‘¢1|_l‘ 2 —z + My IF, =m(BV,. —BV..)
g 28 M 2g 0% T o=
}:F; =’"(B;V;, _Blyn,)
Steady Uniform Form'
1 2 2 2
i =p, AV, = p,A,V, —}:_—W—V—2+-L!+z,—y—'—-ﬂ—z.+hl 3F =V, - V,)
mg 28 Y 2y Y
Steady Uniform Incompressible Flow'
1 2 2 2
Q=AW = A¥, Y A XF = i(V; — V)
mg 2g 7 2. X
H +V—'2+-&+z, = H; +V—’2+P—’+z,+hl
LA~ 285 -7
rin = mass flux a = kinetic energy correction factor h; = head loss

Q = flow rate
V = average velocity
[vas
T

V3dA
V4
B = momentum correction factor

!V’dA
T V4

SW =W+ Wy + W,
H, = pump head = W,lmg
H; = turbine head = Wing

"The control volume has one entrance (section 1) and one exit (section 2).



