
The Integral Forms of the 
Fundamental Laws
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• The integral quantities in fluid mechanics are contained in the 
three laws:

• Conservation of Mass
• First Law of Thermodynamics
• Newton’s Second Law

• They are expressed using a Lagrangian description in terms of a 
system (fixed collection of material particles).

The Three Basic Laws
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• CONSERVATION OF MASS: Mass of a system remains 
constant.

The Three Basic Laws

Integral form of the mass-conservation 
equation. ρ = Density; dV = Volume occupied 
by the particle

• FIRST LAW OF THERMODYNAMICS: Rate of heat transfer to a 
system minus the rate at which the system does work equals the 
rate at which the energy of the system is changing.

Specific energy (e): Accounts for kinetic 
energy per unit mass (0.5V2), potential 
energy per unit mass (gz), and internal 
energy per unit mass ( !𝜇).
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• NEWTON’S SECOND LAW: Resultant force acting on a 
system equals the rate at which the momentum of the 
system is changing.

The Three Basic Laws

In an inertial frame of reference.

• Moment-of-Momentum Equation: Resultant moment acting on a 
system equals the rate of change of the angular momentum of the 
system.
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• Control Volume: A region of space into which fluid enters 
and/or from which fluid leaves.

The Three Basic Laws
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• Interested in the time rate of change of an extensive property to 
be expressed in terms of quantities related to a control volume.

• Involves fluxes of an extensive property in and out of a control 
volume.

• Flux is the measure of the rate at which an extensive property 
crosses an area.

System-to-Control-Volume Transformation
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• The flux across an element dA is:

System-to-Control-Volume Transformation

Control surface: The surface 
area that completely encloses 
the control volume.

!𝑛: Unit vector normal to dA (always 
points out of the control volume)
η: Intensive property

• Only the normal component of !𝑛.V contributes to this flux.
• Positive component means a flux out of the volume.
• Negative component indicates a flux into the volume.
• If the net flux is positive: Flux out > flux in
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• The Reynolds transport theorem is a system-to-control-volume 
transformation.

System-to-Control-Volume Transformation

Reynolds Transport Theorem

• This is a Lagrangian-to-Eulerian transformation of the rate of change of 
an extensive quantity.

• First part of integral: Rate of change of an extensive property in the control 
volume.

• Second part of integral: Flux of the extensive property across the control 
surface (nonzero where fluid crosses the control surface).
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• An equivalent form of the control volume is:

System-to-Control-Volume Transformation

Reynolds Transport Theorem

• The time derivative of the control volume is moved inside the integral:
• For a fixed control volume, the limits on the volume integral are independent 

of time. 
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System-to-Control-Volume Transformation
� 4.3.1 Simplifications of the Reynolds Transport Theorem

• Steady-state (time derivative is zero):

• Often one inlet (A1), and one outlet (A2):

• For uniform properties over a plane area:
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System-to-Control-Volume Transformation
� 4.3.1 Simplifications of the Reynolds Transport Theorem

• Unsteady flow with uniform flow 
properties:
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• For a steady flow, this simplifies to:

Conservation of Mass

• Uniform flow with one entrance and one exit:

Mass of a system is fixed.

For constant density, the continuity 
equation is only dependent on A and V
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• If the density is uniform over each area, with nonuniform 
velocity profiles:

Conservation of Mass

• The mass flux �̇� (kg/s) is the mass rate of flow:

• Where Vn is the normal component of velocity.

(averages can also be used)
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Conservation of Mass

• The flow rate (or discharge) Q (m3/s) is the volume rate of flow:

• Mass flow rate is often used in compressible flow. The flow rate is often 
used to specify incompressible flow.
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Conservation of Mass
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Conservation of Mass
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Conservation of Mass



18

Conservation of Mass
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Conservation of Mass
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• This equation is required if heat is transferred 
(boiler/compressor) or work is done (pump/turbine).

• Can relate pressures/velocities when Bernoulli’s equation cannot 
be used.

Energy Equation

Where e is the specific energy and consists of the specific kinetic energy, specific potential 
energy, and specific internal energy.

• In terms of a control volume:
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Energy Equation

• In terms of a control volume:

• �̇�: Rate-of-energy transfer across the control surface due to a temperature 
difference.

• �̇�: Work-rate term due to work being done by the system.
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Energy Equation

• The work-rate term is from the work being done by the system.
• Rate of work (Power) is the dot product of force with its velocity.

� Work-Rate Term

The velocity is measured w.r.t. a fixed inertial 
reference frame. Negative sign is because work 
done on the control volume is negative. 

• If the force is from variable stress over a control surface:

• τ is a stress vector acting on an elemental area dA [A differential force]. 
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Energy Equation
� Work-Rate Term
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Energy Equation

• From the previous equation, the energy equation can be rewritten as:

� General Energy Equation

• Losses are the sum of all terms for unusable forms of energy.

• Can be due to viscosity (causes friction resulting in increased internal 
energy).

• Or due to changes in geometry resulting in separated flows.
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Energy Equation

• For steady-flow with one inlet and one outlet (with uniform profile) and no 
shear work, the following energy equation is used:

� Steady Uniform Flow

• Where hL is the head loss (dimensions of length).

•
!!

" is the velocity head, and #$ is the pressure head. 

Where K is the loss 
coefficient
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Energy Equation

• For steady-flow with one inlet and one outlet (with uniform profiles) and 
no shear work, negligible losses, and no shaft work:

� Steady Uniform Flow

• The pump head, HP is the energy term associated for a pump ["̇!
#̇$
]. If a 

turbine is involved, the energy term is called the turbine head. 

Almost identical to Bernoulli’s 
equation for a constant density flow.
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Energy Equation

• If a turbine/pump is used, the efficiency of a device is needed, ηT

• The power generated by the turbine is:

� Steady Uniform Flow

• The power required by a pump is: The power is calculated in 
Watts
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Energy Equation

• If a uniform velocity profile assumption cannot be used, the velocity 
distribution should be corrected:

• Using a kinetic-energy correction factor α

� Steady Nonuniform Flow

• The term that accounts for the flux in kinetic energy is:

With #𝑉 being the average velocity over area A

• The final equation that account for this nonuniform velocity distribution is:
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Energy Equation
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Energy Equation
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Energy Equation
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Energy Equation
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Energy Equation
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Energy Equation
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Energy Equation
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Momentum Equation

• Newton’s second law (momentum equation): The resultant force acting on 
a system equals the rate of change of momentum of the system in an 
inertial reference frame.

� General Momentum Equation

• For a control volume:
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Momentum Equation

• If flow is uniform and steady, for N number of entrances and exits, the 
previous equation can be simplified to:

� Steady Uniform Flow

Horizontal nozzle 
with one entrance 

and one exit

• The momentum equation simplifies to:
With continuity:
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Momentum Equation
� Steady Uniform Flow

Horizontal nozzle 
with one entrance 

and one exit

• To determine the x-component of the force of the joint on the 
nozzle:

As (V1)x = V1 and (V2)x = 0
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Momentum Equation
� Steady Uniform Flow

• To find the force of the gate on the flow:
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Momentum Equation
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Momentum Equation
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Momentum Equation



43

Momentum Equation
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Momentum Equation

• The momentum equation is often associated with deflectors in analysis of 
turbomachines (turbines, pumps, and compressors).

• There are two deflectors: fluid jets in stationary deflectors, and those 
deflected by moving deflectors.

� Momentum Equation Applied to Deflectors

Assume
• Pressure external to fluid jets is constant everywhere, so pressure in a fluid as it 

moves over a deflector remains constant.
• Negligible resistance due to fluid-deflector interaction.

• Relative speed between the deflector surface and the jet stream is unchanged.
• Lateral spreading of a plane jet is neglected.
• Body force and weight of control volume is small and negligible.
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Momentum Equation

• From Bernoulli's equation:
� V2 = V1 (Magnitude of velocity vectors are equal)
� Pressure is constant external to the fluid jet (and 

there are no changes in elevation).

� Momentum Equation Applied to Deflectors [Stationary Deflector]

• Hence, for a steady and uniform flow, the momentum equation becomes:
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Momentum Equation
� Momentum Equation Applied to Deflectors [Moving Deflectors]

• Can be either a single moving deflector (snowplow blade) or a series of 
moving deflectors (turbine vanes).



47

Momentum Equation

• For a single deflector moving in the positive x-direction with the speed VB.
• In a reference frame attached to a stationary nozzle, the flow is unsteady.

• However, in a reference frame attached to the deflector, a steady flow is observed.

� Momentum Equation Applied to Deflectors [Moving Deflectors]

• Hence, the momentum equation becomes:

• Where �̇�% is the mass flux exiting the fixed jet with a changed momentum.
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Momentum Equation

• For a cascade of vanes:

� Momentum Equation Applied to Deflectors [Moving Deflectors]
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Momentum Equation

• If all of the mass exiting the jet has a 
changed momentum:

� Momentum Equation Applied to Deflectors [Moving Deflectors]

• As the x-component of the force is related to the 
power output:

• Found by multiplying this force by the blade speed for each jet 
(N).

• Y-component force doesn’t move in the y-direction:
produces no power.
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Momentum Equation
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Momentum Equation
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Momentum Equation
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Momentum Equation
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Momentum Equation

• The momentum equation in a control 
volume between sections 1 and 2 gives:

� Momentum Equation Applied to Propellers

• Since the areas A1 and A2 are not known, 
another control volume is drawn close to 
the propeller.

• V3 ≈ V4 and A3 ≈ A4 = A

• Neglecting viscous effects, and realizing that P1 = P2 = Patm



55

Momentum Equation

• The power input for this propeller is then:

� Momentum Equation Applied to Propellers

• The moving propeller requires power:

• Theoretical propeller efficiency:
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Momentum Equation

• A wind turbine extracts energy from the airflow.
• Velocity downstream is reduced.
• Diameter downstream is increased.
• Convert wind power to mechanical power (and then to 

electric power through electric generators).

� Control-Volume Analysis of Wind Turbines

• Two main types: Vertical-axis and horizontal-axis wind turbines.
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Momentum Equation

• Power in a wind stream is equal to the rate of incoming kinetic energy of 
the wind within a streamtube.

� Control-Volume Analysis of Wind Turbines

• Hence, the available power for this turbine is:

With V1 being the upstream wind velocity, and 
�̇� is the mass flow rate through the streamtube.

• The total energy, E, that is found by integrating the above equation over 
a time period:
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Momentum Equation

• Between a section a distance upstream of the turbine (1) and at the inlet of the 
turbine (a), Bernoulli's equation is used:

� Control-Volume Analysis of Wind Turbines

Assume:
An adiabatic, incompressible flow
Negligible changes in potential energy

Between a and b, the velocity of 
wind decreases as the kinetic 
energy of the wind is converted 
to mechanical work. 
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Momentum Equation

• Between a section a distance downstream of the turbine (2) and section b:

� Control-Volume Analysis of Wind Turbines

Assume:
An adiabatic, incompressible flow
Negligible changes in potential energy
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Momentum Equation

• The pressure difference across the turbine (a and b):

� Control-Volume Analysis of Wind Turbines

• Between points 1 and 2, the pressure is at ambient p1 = p2 = p∞

• The change in wind velocity across the turbine is negligible.
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Momentum Equation

• The Force, F, on the turbine support is found using the 
momentum equation across sections 1 and 2.

� Control-Volume Analysis of Wind Turbines

• Between sections a and b:

• A is the swept area of the turbine blades, and �̇� = 𝜌𝑉%𝐴, with 
Vt being the average wind velocity across the turbine. 

• Hence, the wind power is:
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Momentum Equation

• The fluid cannot come to a complete stop at the turbine exit.
• There is an optimum fluid exit velocity that results in maximum 

power.

� Control-Volume Analysis of Wind Turbines

• Hence, the maximum power that can be extracted from the 
wind turbine is:

• The maximum efficiency (power coefficient) of the turbine is calculated as 
follows:
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Momentum Equation
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Momentum Equation
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Momentum Equation
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Momentum Equation
� Aerodynamic Analysis of a Rotating Wind-Turbine Blade

• More detail into blade geometry is 
needed as the flow through the wind 
turbine is dependent on the airfoil.

Blade Profile characteristics
• ω: Angular speed
• α: Angle of attack of the blade w.r.t. 

relative velocity of the wind
• β: Pitch angle between the chord line 

and the plane of rotation of the rotor.

• The lift and drag forces are calculated 
using the relative velocity.

• This vector is the velocity of the wind 
relative to the airfoil.
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Momentum Equation
� Aerodynamic Analysis of a Rotating Wind-Turbine Blade

• From previous, the blade velocity is VB = 
ωR, with ω being the angular velocity of 
the rotor and R the distance between the 
center of rotation and the position on the 
airfoil where the forces are determined.

• V∞ is the free-stream velocity.

• The relative velocity (from the triangle) is:
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Momentum Equation
� Aerodynamic Analysis of a Rotating Wind-Turbine Blade

• A two-dimensional approach to find the lift/drag 
(per unit length) is:

• c: Chord length (distance from the nose to the tail)
• CL and CD are lift and drag coefficients

• The normal/tangential forces and the coefficients are:
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Momentum Equation
� Aerodynamic Analysis of a Rotating Wind-Turbine Blade

• The thrust/torque forces for a rotating blade and 
the respective coefficients are found as:

• The torque (per unit length) on the blade is 

• The total torque is obtained by multiplying the torque of a single blade by the 
number of blades. Hence the power:

N: Number of blades
n: Rotational speed (rev/s)



70

Momentum Equation
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Momentum Equation
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Momentum Equation
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Momentum Equation
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Momentum Equation

• For nonuniform velocity profiles, the momentum flux is: 

� Steady Nonuniform Flow

• Through this, the momentum equation for a steady flow with one inlet 
and one exit:

β is the momentum-correction factor and is:

Laminar flow with a 
parabolic profile in a 
circular pipe has β = 4/3
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Momentum Equation
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Momentum Equation
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Momentum Equation

• Certain applications need a noninertial reference frame to measure velocity.
• E.g., To study the flow from a rocket or turbine blade, or flow through a dishwasher arm

� Noninertial Reference Frames

• The equation above is Newton’s Second Law.
• V: Velocity relative to the noninertial frame.

• Furthermore, the above equation can be rewritten as:

where Ft (the inertial body force) is:
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Momentum Equation
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Momentum Equation
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Moment-of-Momentum Equation

• Needed to find the line of action of a given force component.
• Needed to analyze flow situations in devices with rotating components (to relate 

rotational speed to other flow parameters)
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Moment-of-Momentum Equation

• The general equation with attached inertial forces is:

MI is the inertial moment that accounts for 
the noninertial reference frame.
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Moment-of-Momentum Equation

• When a system-to-control volume transformation is applied, the moment-of-
momentum equation becomes:
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Moment-of-Momentum Equation
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Moment-of-Momentum Equation
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Moment-of-Momentum Equation
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Summary
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Summary


