
Dimensional Analysis 
and Similitude



• Dimensional analysis is used to keep the required experimental studies to 
a minimum.

• Based off dimensional homogeneity [all terms in an equation should have 
the same dimension.]

Introduction

Bernoulli’s equation: 
Dimension of each term is 
length 

Bernoulli’s equation in this 
form: Each term is 
dimensionless



• Similitude is the study of predicting prototype conditions from model 
observations.

• Uses dimensionless parameters obtained in dimensional analysis.

Introduction

• Two approaches can be used in dimensional analysis:
• Buckingham π-theorem: Theorem that organizes steps to ensure dimensional 

homogeneity.
• Extract dimensionless parameters from the differential equations and 

boundary conditions. 



Dimensional Analysis

Motivation

• For pressure drop across a slider valve above:
• We can assume that it depends on pipe mean velocity V, fluid density ρ, fluid 

viscosity μ, pipe diameter d, and gap height h [Δp=ƒ(V, ρ, μ, d, h)]



Dimensional Analysis

Motivation

• Could fix all parameters except velocity and find pressure dependence on 
average velocity.

• Repeat with changing diameter, etc.,



Dimensional Analysis

Motivation

• The equation could be rewritten in terms of dimensionless parameters as:
[Δp=ƒ(V, ρ, μ, d, h)]



Dimensional Analysis

Review of Dimensions

• All quantities have a combination of dimensions of length, time, mass, and 
force by Newton’s Second Law:

• In terms of dimensions:

• To relate thermal effects to the M-L-T system (compressible gas flow), the 
equation below is used. 

No additional dimensions
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Dimensional Analysis

Buckingham π-Theorem

• In any problem, a dependent variable x1 is expressed in terms of 
independent variables, i.e., x1 = f(x2,x3,x4,…,xn)  [n: Number of variables]

π-Terms

• There are (n-m) dimensionless groups of variables, i.e., π1 = f1(π2,π3,…,πn-m)
• m: Number of basic dimensions included in the variables.
• π1: includes the dependent variable; remaining π-terms include only independent variables.

• For a successful dimensional analysis, a dimension must occur at least twice 
or not at all.



Dimensional Analysis

Buckingham π-Theorem Procedure



Dimensional Analysis

Buckingham π-Theorem Procedure Example

• To combine variables of surface tension σ, velocity V, density ρ, and length l 
into a π-term.

• Need to determine a, b, c, d so that the grouping is dimensionless (Table).

• Equate the exponents on each of the basic dimensions and solve 
simultaneously:



Dimensional Analysis

Buckingham π-Theorem Procedure Example

• The π-term becomes:

• Can select c to be any number other than zero (simplest is 1).

• To combine variables of surface tension σ, velocity V, density ρ, and length l 
into a π-term.



Dimensional Analysis

Buckingham π-Theorem Procedure Example

• NOTE: A dimensionless parameter raised to any power remains 
dimensionless. 
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Dimensional Analysis

Common Dimensionless Parameters

• For a relationship between pressure drop Δp, characteristic length l, 
characteristic velocity V, density ρ, viscosity µ, gravity g, surface tension σ, 
speed of sound c, and angular frequency ω, i.e., Δp = f(l, V, ρ, µ, g, c, ω, σ)

• Using the π-theorem, with l, V, and ρ as repeating variables gives: 
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Common Dimensionless Parameters

• Each of the π-terms in the equation appears in many fluid flow situations.



Dimensional Analysis

Common Dimensionless Parameters

• Each dimensionless number can be written as a ratio of two forces.



Dimensional Analysis

Common Dimensionless Parameters



Similitude

General Information

• Study of predicting prototype conditions from model observations.

• If a model study has to be performed:
• Need a quantity measured on the model (subscript m) to predict an associated 

quantity on the prototype (subscript p).
• This needs dynamic similarity between the model and prototype.
• Forces which act on corresponding masses in the model flow and prototype 

flow are in the same ratio throughout the entire flows.



Similitude

General Information

• If inertial forces, pressure forces, viscous forces, and gravity forces are 
present:

Due to dynamic similarity at 
corresponding points in the 
flow fields.Rearrange



Similitude

General Information

• If only the forces above (previous slide) are present:

• Dimensional analysis lets the equation be written in terms of force ratios, as 
there is only one main dimension.

• If the Reynolds and Froude numbers are the same on the model and 
prototype, the Euler number should be the same.

• Guarantee dynamic similarity between model and prototype by equating the 
Reynolds number and Froude number of the model to that of the prototype.



Similitude

General Information

• If compressibility forces are included, Mach number would be included.

• The inertial force ratio would be:

If the mass ratio is a constant, then the 
acceleration ratio is a constant

Hence:



Similitude

General Information

• Kinematic Similarity: Velocity ratio is a constant between all 
corresponding points in the flow fields.

• Streamline pattern around the model is the same as that around the 
prototype except for a scale factor.

• Geometric Similarity: Length ratio is a constant between all corresponding 
points in the flow fields.

• Model has the same shape as the prototype.



Similitude

General Information 
For complete similarity between the model and prototype

• Geometric similarity must be satisfied.
• Mass ratio of corresponding fluid elements is a constant.
• Dimensionless parameters (below) should be equal.



Similitude

General Information

• Can now predict quantities of interest on a prototype from measurements 
on a model.

Drag forces, FD Equate ratio of drag forces to ratio of 
inertial forces.

Power input, 𝑊̇ Power is force times velocity.

• Can predict a prototype quantity if we select the model fluid, the scale fluid, 
and the dimensionless number.



Similitude

Confined Flows

• A confined flow is a flow that has no free surface (liquid-gas surface) or 
interface (two different liquids).

• Can only move within a specific region (external flows around objects, or 
internal flows in pipes).

• Isn’t influenced by gravity or surface tension.
• Dominant effect is viscosity in incompressible confined flows.
• Relevant flows are pressure, inertial, and viscous forces.

• Dynamic similarity is obtained if the ratios between the model and the prototype are the 
same.

• Hence, only the Reynolds number is the dominant dimensionless parameter.
• If compressibility effects are significant, Mach number would become important.
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Free-Surface Flows

• A free-surface flow is a flow where part of the boundary involves a pressure 
boundary condition.

• E.g., Flows in channels, flows with two fluids separated by an interface, etc.

• Location and velocity of the free surface are unknown.
• Pressure is the same on either side of the interface (unless there is significant surface 

tension).
• Gravity controls the location and motion of the free surface.
• Viscous effects are significant

• Requires the Froude number.
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Similitude

Compressible Flows

• For most compressible flows, the Reynolds number is very large (not 
significant).

• Mach number is the primary dimensionless parameter for model studies.

• If the study is carried in a wind tunnel (with a prototype fluid of air), cm = cp .
• Assume the temperature is the same in both flows.

• In this case, the velocity in the model study is equal to the velocity associated with the 
prototype. 
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Periodic Flows

• There are regions of flows in which periodic motions occur.
• E.g., When fluid flows past a cylindrical object.

• For these flows, we need to equate Strouhal numbers to model the 
periodic motion.

• Additional dimensionless parameters that may be equated.
• In viscous flows à Reynolds number
• In free-surface flows à Froude number
• In compressible flows à Mach number



Similitude



• Usually when using differential equations to describe the laminar/turbulent, 
steady/unsteady, compressible/incompressible, confined/free-surface flows, 
etc.à express in dimensionless/normalized form.

Normalized Differential Equations

• In vector form, the continuity equation and the Navier-Stokes equations are:

Kinetic Pressure: Pressure 
resulting from fluid motion alone

• In terms of kinetic pressure, the Navier-Stokes becomes:



• To normalize the differential equations, we need to select characteristic 
quantities:

Normalized Differential Equations

Asterisks: 
Dimensionless 
quantities

• Hence:



• The Reynolds number as a parameter in the normalized Navier-Stokes 
equation is:

Normalized Differential Equations

• If a portion of the boundary is oscillating, the Strouhal number should be 
introduced.

• Velocity of the fluid is the same as that of the rotating part.



• A boundary condition that introduces another parameter is the free-surface, 
which introduces the Froude number.

Normalized Differential Equations

• The Weber number is introduced for a boundary condition that involves 
surface tension.



• The most common flow parameters that use l as a characteristic length are:

Summary



• The Navier-Stokes equation in terms of dimensionless variables is:

Summary

• pk is the kinetic pressure.
• All variables are dimensionless since the Reynolds number appears in the 

equation.


