Dimensional Analysis
and Similitude



Introduction

Dimensional analysis is used to keep the required experimental studies to

a minimum.

Based off dimensional homogeneity [all terms in an equation should have

the same dimension.]
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Bernoulli’'s equation:
Dimension of each term is
length

Bernoulli’'s equation in this
form: Each term is
dimensionless



Introduction

Similitude is the study of predicting prototype conditions from model
observations.
Uses dimensionless parameters obtained in dimensional analysis.

Two approaches can be used in dimensional analysis:

Buckingham 1r-theorem: Theorem that organizes steps to ensure dimensional
homogeneity.

Extract dimensionless parameters from the differential equations and
boundary conditions.



Dimensional Analysis
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« For pressure drop across a slider valve above:

We can assume that it depends on pipe mean velocity V, fluid density p, fluid
viscosity [, pipe diameter d, and gap height h [Ap=f(V, p, 4, d, h)]



Dimensional Analysis
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- Could fix all parameters except velocity and find pressure dependence on
average velocity.

- Repeat with changing diameter, etc.,

Ap

(b)

Pressure drop versus velocity curves: (a) p, u, h fixed: (b) p, p, d fixed.
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Dimensional Analysis
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[Ap=£(V, p, M, d, h)]

- The equation could be rewritten in terms of dimensionless parameters as:

Vpd/u

Dimensionless pressure drop versus dimensionless velocity.



Dimensional Analysis

Review of Dimensions

All quantities have a combination of dimensions of length, time, mass, and
force by Newton’s Second Law: X F = ma

In terms of dimensions:

To relate thermal effects to the M-L-T system (compressible gas flow), the
equation below is used.

F I ME'T iE I3
p = pRT [RT]=[1)/p]=F- = "

M f & M /
No additional dimensions



Dimensional Analysis

Symbols and Dimensions of Quantities Used in Fluid Mechanics

Quantity Symbol Dimensions
Length { L
Time t ix
Mass m M
Force F ML/T?
Velocity V LiIT
Acceleration a L/T?
Frequency @ /S
Gravity g L/T?
Area A r
Flow rate Q DT
Mass flux m MIT
Pressure )2 M/LT?
Stress T M/LT?
Density p M/’
Specific weight Y M/*T?
Viscosity I MILT
Kinematic viscosity v ;T
Work W ML} (T?
Power, heat flux W.0 ML[T?
Surface tension o M[T?
Bulk modulus B M/LT?




Dimensional Analysis

Buckingham 1r-Theorem

In any problem, a dependent variable x4 is expressed in terms of
independent variables, i.e., X = f(X5,X3,X4,...,X,) [n: Number of variables]

T-Terms

There are (n-m) dimensionless groups of variables, i.e., = £ (115, 1T3,...,T.m)
m: Number of basic dimensions included in the variables.
T4: includes the dependent variable; remaining 1T-terms include only independent variables.

For a successful dimensional analysis, a dimension must occur at least twice
or not at all.



Dimensional Analysis

Buckingham 1mr-Theorem Procedure

1.

3.

Write the functional form of the dependent variable depending on the (n — 1) inde-
pendent variables. This step requires knowledge of the phenomenon being studied. All
variables that effect the dependent variable must be included. These include geometric
variables, fluid properties, and external effects that influence the variable being stud-
ied. Quantities that have no influence on the dependent variable must not be included.
Also, do not include variables that depend on each other; for example, both radius
and diameter would not be included. The variables on the right-hand side of Eq. 6.2.7
should be independent.

Identify m repeating variables, variables that will be combined with each remaining
variable to form the 7r-terms. The repeating variables selected from the independent
variables must include all of the basic dimensions, but they must not form a 7-term
by themselves. An angle cannot be a repeating variable since it is dimensionless and
forms a 7-term itself.

Form the 7-terms by combining the repeating variables with each of the remaining
variables.

4. Write the functional form of the (n — m) dimensionless 7r-terms.



Dimensional Analysis

Buckingham 1r-Theorem Procedure Example

To combine variables of surface tension g, velocity V, density p, and length |

into a TT-term. e
T =o'V’ pl

Need to determine a, b, c, d so that the grouping is dimensionless (Table).

a b c
o - (4] 2]
f b f y b3

Equate the exponents on each of the basic dimensions and solve
simultaneously: M: 0=a+c

L: 0=b-3c+d

T: 0=-2a-b

a=-—c¢ b=2c d=c



Dimensional Analysis

Buckingham 1mr-Theorem Procedure Example

To combine variables of surface tension g, velocity V, density p, and length |
into a tr-term.
T = O_GI/b pc‘/d

72 \°
o

Can select ¢ to be any number other than zero (simplest is 1).

The 11-term becomes:




Dimensional Analysis

Buckingham 1r-Theorem Procedure Example

NOTE: A dimensionless parameter raised to any power remains
dimensionless.



Dimensional Analysis

The drag force F,, on a cylinder of diameter 4 and length / is to be studied. What func-
tional form relates the dimensionless variables if a fluid with velocity ¥ flows normal to
the cylinder?

Solution

First, we must determine the variables that have some influence on the drag force. If we
include variables that do not influence the drag force, we would have additional 7r-terms
that experimentation would show to be unimportant; if we do not include a variable that

does influence the drag force, experimentation would also reveal that problem. Experience
is essential in choosing the correct variables; in this example we will include as influential
variables the free stream velocity ¥, the viscosity p, the density p of the fluid, in addition to
the diameter d and the length / of the cylinder, resulting in n = 6 variables. This is written as

f;) =f(d5 I’ V’I‘L’p)
The variables are observed to include m = 3 dimensions. Refer to Table 6.1 and write

ML =% =X = wm=t [p]=%

F = —
(5] T T T

Consequently, we can expectn —m =6 — 3 = 3 7-terms.

We choose repeating variables with the simplest combinations of dimensions such that
they do not form a 77-term by themselves (we could not include both d and / as repeating vari-
ables); the repeating variables are chosen to be &, ¥/ and p. These three variables are combined
with each of the remaining variables to form the sr-terms. Rather than writing equations
similar to Eq. 6.2.9 for the r-terms, let us form the 7-terms by inspection. When the repeat-
ing variables are combined with F},, we observe that only F,, and p have the mass dimension;
hence F,, must be divided by p. Only F,, and ¥ have the time dimension; hence, F,, must be
divided by V2 Thus F,, divided by p has L* in the numerator; when divided by ¥ this results
in I? remaining in the numerator. Hence we must have d@” in the denominator resulting in

Fp
" T e—
Y pd?



Dimensional Analysis

When d, ¥, and p are combined with / there results

" = —

*d

The last sr-term results from combining p with d, ¥, and p. The mass dimension disap-

pears if we divide p by p. The time dimension disappears if we divide p by V. This leaves

one length dimension in the numerator; hence d is needed in the denominator resulting in
S

pvd

The dimensionless, functional relationship relating the 7-terms is

F 1
T =fi(7"2,’”'3) or g =ﬁ[—sL)
P p

where f;( ) simply means it’s different from f( ).

Rather than the original relationship of six variables we have reduced the relationship
to one involving three 7-terms, a much simpler expression. To determine the particular
form of the functional relationship above, we would actually have to solve the problem:
experimentation would be needed if analytical or numerical methods were not available.
This is often the case in fluid mechanics.

Note that we could have included several additional variables in our original list, such
as gravity g, the angle 6 that the velocity makes with the cylinder, and the roughness e of the
cylinder surface. To not include variables that are significant, or to include variables that are
not significant is a matter of experience. The novice must learn how to identify significant
variables; however, even the experienced researcher is often at a loss to correlate certain
phenomena; much experimentation is often needed to discover the appropriate parameters.



Dimensional Analysis

The rise of liquid in a capillary tube is to be studied. It is anticipated that the rise 4 will
depend on surface tension o, tube diameter d, liquid specific weight y, and angle B of attach-
ment between the liquid and tube. Write the functional form of the dimensionless variables.

2

Solution
The expression relating the variables is
h=f(o,d,y,B)
The dimensions of the variables are
[A1=L [y1= ! [B] =1 (dimensionless) [o]= Tﬂ [d]=L

{ f e

By observation we see that M /T? occurs as that combination in both o and v, hence
M and T are not independent dimensions in this problem. There are only two independent
groupings of basic dimensions, L and M/T? Thus m = 2, and we choose o and d as the
repeating variables. When combined with A, the first 77-term is
h
L ===

d

When o and d are combined with v, the second 7r-term is

_yd
(02

T

Finally, since the angle B8 is dimensionless, it forms a #-term by itself; that is,

T =P



Dimensional Analysis

The final functional form relating the 7r-terms is
d2
m=flm,m)  or = —f(”’ ]

Note: In this example we could not have chosen the angle B as a repeating variable
since it already is a dimensionless 7-term. Also, we could not have chosen three repeating
variables since M and T were not independent.

Also, note that we may have thought that gravity should have been included in the prob-
lem. If it had been included above, it would not have appeared in any of the 7-terms, indicat-
ing that it should not have been included. If density and gravity, rather than specific weight,
had been included, the relationship above would have resulted since y = pg: this, by the
way, would have avoided the necessity of observing that M /T* was a dimensional grouping.

A final note regarding the functional form of the sr-terms: The relationship above
could equally have been written as

7 =A5)

Also, occasionally a different set of repeating variables could be selected. This simply
expresses the final functional equation in a different but equivalent form. Actually, a
second form can be shown to be a combination of the 7r-terms from an initial form.



Dimensional Analysis

Common Dimensionless Parameters

For a relationship between pressure drop Ap, characteristic length |,
characteristic velocity V, density p, viscosity y, gravity g, surface tension o,
speed of sound c, and angular frequency w, i.e., Ap =1, V, p, 4, g, ¢, W, O)

Using the tr-theorem, with |, V, and p as repeating variables gives:

o R A LR )

pV- w lg ¢V o

Ap _ (Vpl V? V lw Iﬂpl]



Dimensional Analysis

Common Dimensionless Parameters

Each of the 11-terms in the equation appears in many fluid flow situations.

AN fi MV—KEM] Euler number, Eu = A_p’
pV* "\ w lg ¢V o pV?
Vpl
Reynolds number, Re = —

I

: v
Froude number”, Fr = ——
Jig

v

Mach number, M = —

‘&

Strouhal number?, St = 170)
Vip

Weber number?, We =

J



Common Dimensionless Parameters

= &

e

Fy

E,
E,

Dimensional Analysis

Each dimensionless number can be written as a ratio of two forces.

= pressure force = Ap4 ~ Apl’
= inertial force = mVﬂ ~ pl:‘VK = pl*V?
ds [
: di V
= viscous force = 74 = plA ~ p—=F =ulV
dy [
= gravity force = mg ~ pl’g
dp .

= compressibility force = BA ~ pd—l2 = pc*P
p

centrifugal force = mro® ~ pllo* = pl'w’

= surface tension force = o/

Eu «

Re =

Fr «

M x

St o«

pressure force

inertial force
inertial force

viscous force
inertial force

gravity force
inertial force

compressibility force
centrifugal force

inertial force
inertial force

surface tension force



Dimensional Analysis

Common Dimensionless Parameters

Common Dimensionless Parameters in Fluid Mechanics

FParameter Expression Flow situations where parameter is important
Euler number Ap Flows in which pressure drop is significant: most flow
pV? situations
Reynolds number plV Flows that are influenced by viscous effects: internal
M flows, boundary layer flows
Froude number V Flows that are influenced by gravity: primarily free
Jlg surface flows
Mach number V Compressibility is important in these flows, usually
¢ ifV > 03¢
Strouhal number lw Flow with an unsteady component that repeats itself
V periodically
Weber number Vilp Surface tension influences the flow: flow with an

o interface may be such a flow




Similitude

General Information

Study of predicting prototype conditions from model observations.

If a model study has to be performed:
Need a quantity measured on the model (subscript m) to predict an associated
quantity on the prototype (subscript p).
This needs dynamic similarity between the model and prototype.

Forces which act on corresponding masses in the model flow and prototype
flow are in the same ratio throughout the entire flows.



Similitude

General Information

If inertial forces, pressure forces, viscous forces, and gravity forces are
present:

(F7) (Fp) ey R ) Due to dynamic similarity at
7 N7 A N A Wt ding points in the
r U e W) (B corresponding p
Rearrange flow fields.

#.-# FL-F (-

/' m P & T/ . P

Eu, = Eu Re. = Re AR 2

m p m P



Similitude

General Information

- If only the forces above (previous slide) are present: F; = f(Fp, F,, F,)

- Dimensional analysis lets the equation be written in terms of force ratios, as
there is only one main dimension.

Eu = f(Re, Fr)

- If the Reynolds and Froude numbers are the same on the model and
prototype, the Euler number should be the same.

- Guarantee dynamic similarity between model and prototype by equating the
Reynolds number and Froude number of the model to that of the prototype.



Similitude

General Information

If compressibility forces are included, Mach number would be included.

The inertial force ratio would be:

Fi)w _ @ _ o If the mass ratio is a constant, then the
(£7), am, acceleration ratio is a constant
Hence:\‘
" I

m

= const.

a, Vil



Similitude

General Information

Kinematic Similarity: Velocity ratio is a constant between all
corresponding points in the flow fields.
Streamline pattern around the model is the same as that around the
prototype except for a scale factor.
Geometric Similarity: Length ratio is a constant between all corresponding
points in the flow fields.
Model has the same shape as the prototype.



Similitude

General Information
For complete similarity between the model and prototype

- Geometric similarity must be satisfied.
- Mass ratio of corresponding fluid elements is a constant.
- Dimensionless parameters (below) should be equal.

Euler number, Eu = A_pz
pV
Vpl
Reynolds number, Re = il
I
) vV
Froude number?, Fr = —
Jig
V

Mach number, M = —
c

Strouhal number?, St = 17(0

| &/
Weber number?, We = P




Similitude

General Information

Can now predict quantities of interest on a prototype from measurements
on a model.

Drag forces, Fp (F,). (F) o V2P Equate ratio of drag forces to ratio of
——— inertial forces.

(F), (&), pV3E

Power input, W Power is force times velocity.

Wy _ (F)uVe _ BV,

m m - m m-m m

w, (F),V, pVIW,

PP P

Can predict a prototype quantity if we select the model fluid, the scale fluid,
and the dimensionless number.



Similitude

Confined Flows

- Aconfined flow is a flow that has no free surface (liquid-gas surface) or
interface (two different liquids).

- Can only move within a specific region (external flows around objects, or
internal flows in pipes).

- Isn’t influenced by gravity or surface tension.
- Dominant effect is viscosity in incompressible confined flows.

- Relevant flows are pressure, inertial, and viscous forces.

Dynamic similarity is obtained if the ratios between the model and the prototype are the
same.

- Hence, only the Reynolds number is the dominant dimensionless parameter.
If compressibility effects are significant, Mach number would become important.




Similitude

A test is to be performed on a proposed design for a large pump that is to deliver 1.5 m¥s
of water from a 400-mm-diameter impeller with a pressure rise of 400 kPa. A model
with an 80-mm-diameter impeller is to be used. What flow rate should be used and what
pressure rise is to be expected? The model fluid is water at the same temperature as the
water in the prototype.

Solution
For similarity to exist in this confined incompressible flow problem, the Reynolds numbers
must be equal: that is,

Re, = Re,
| N e
v, e

The ratio of flow rates is found recognizing that Q = VA4:

foky  LACE
QP VPd:

2
5 5

Thus we find that

The dimensionless pressure rise is found using the Euler number:

1 -6

Hence the pressure rise for the model is

s
Ap, =Ap, ==
s

= 400 X 1 X 5* = 10000 kPa

Note that in this example we see that the velocity in the model is equal to the velocity
in the prototype multiplied by the length ratio, and the pressure rise in the model is
equal to the pressure rise in the prototype multiplied by the length ratio squared. If
the length ratio were very large, it is obvious that to maintain Reynolds number equiv-
alence would be quite difficult, indeed. This observation is discussed in more detail in

Section 6.3.4.



Similitude

Free-Surface Flows

- Afree-surface flow is a flow where part of the boundary involves a pressure
boundary condition.
E.g., Flows in channels, flows with two fluids separated by an interface, etc.

« Location and velocity of the free surface are unknown.

- Pressure is the same on either side of the interface (unless there is significant surface
tension).

«  Gravity controls the location and motion of the free surface.
«  Viscous effects are significant

- Requires the Froude number.




Similitude

A 1:20 scale model of a surface vessel is used to test the influence of a proposed design
on the wave drag. A wave drag of 27.6N is measured at a model speed of 2.44 m/s. What
speed does this correspond to on the prototype, and what wave drag is predicted for the
prototype? Neglect viscous effects, and assume the same fluid for model and prototype.
Solution

The Froude number must be equated for both model and prototype. Thus

Iz V
Fr_ = Fr =
it A EE ﬂ’g
This yields, recognizing that g does not vary significantly on the surface of the earth,

w2
V, = V_(;’L] = 2.4420 = 10.9 m/s

To find the wave drag on the prototype, we equate the drag ratio to the inertia force
ratio:

!FD!I — R-V:’:
(F),  #¥l;

This allows us to calculate the wave drag on the prototype as, using p, = p,.,

P, | 2 s
), = gy
2

=27.6 X % X 20% = 220 kN

Note: We could have used the gravity force ratio rather than the inertial force ratio,
but we could not have used the viscous force ratio since viscous forces were assumed

negligible.



Similitude

A 1:10 scale model of an automobile is used to measure the drag on a proposed design.
It is to simulate a prototype speed of 90 km/h. What speed should be used in the wind
tunnel if Reynolds numbers are equated? For this condition, what is the ratio of drag
forces?

Solution
The same fluid exists on model and prototype: thus, equating the Reynolds numbers
results in

lem = V’lf V. = ;/’ l’

V. v, 12
=90 X 10 = 900 km/h

This speed would, of course, introduce compressibility effects, effects that do not exist in
the prototype. Hence the proposed model study would be inappropriate.
If we did use this velocity in the model, the drag force ratio would be
(FD)p — Pprz/i 5 (Fb)p

— = ]

(FD)II pmV:/lzu i (FD)m

Thus we see that the drag force on the model is the same as the drag force on the prototype
if the same fluids are used when we equate Reynolds numbers.




Similitude

In Example 6.5, if the Reynolds numbers were equated, the velocity in the model study
was observed to be in the compressible flow regime (i.e., M > 0.3 or ¥,, > 360 km/h). To
conduct an acceptable model study, could we use a velocity of 90 km/h on a model with a
characteristic length of 10 cm? Assume that the drag coefficient (C,, = F,/ 4 pV'* 4, where
A is the projected area) is independent of Re for Re > 10°. If so, what drag force on the
prototype would correspond to a drag force of 1.2 N measured on the model?

Solution
The proposed model study in a wind tunnel is to be conducted with ¥,, = 90 km/h and
[, = 0.1 m. Usingv = 1.6 X 10~° m?s, the Reynolds number is

_ ol (90 x 1000/3600) x 0.1
v, 1.6 X 107#

This Reynolds number is greater than 10°, so we will assume that similarity exists between

model and prototype. The velocity of 90 km/h is sufficiently high.

The drag force on the prototype traveling at 90 km/h corresponding to 1.2 N on the
model is found from

Re,, =1.56 X 10°

1

272 2

EII:D;’ = ::Zrzi; (FD),=(FD)..7£;/£;-:§ =1.210* = 120N
D/m mm wbit ]

Note that in this example we have assumed that the drag coefficient is independent
of Re for Re > 10°. If the drag coefficient continued to vary above Re = 10° (this would
be evident from experimental data), the foregoing analysis would have to be modified
accordingly.




Similitude

Compressible Flows

For most compressible flows, the Reynolds number is very large (not

significant).
Mach number is the primary dimensionless parameter for model studies.
I/ m I/
M,=M, or - = L
¢ m Cp

If the study is carried in a wind tunnel (with a prototype fluid of air), c,,=c, .
Assume the temperature is the same in both flows.

In this case, the velocity in the model study is equal to the velocity associated with the
prototype.



Similitude

The pressure rise from free stream to the nose of a fusilage section of an aircraft is mea-
sured in a wind tunnel at 20°C to be 34 kPa with a wind-tunnel airspeed of 900 km/h. If
the test is to simulate flight at an elevation of 12 km, what is the prototype velocity and
the expected nose pressure rise?

Solution
To find the prototype velocity corresponding to a wind-tunnel airspeed of 900 km/h,
we equate the Mach numbers
K
=M or V"' = ——i—

" £ JKRT,, kRT,

Thus
12
kRT,
The pressure at the nose of the prototype fusilage is found using the Euler number as
follows:

12
(216.7) e
293 !

_A& = APL
BVa PV
pe PV
. App T Apm ;"LT/%
03119 _ 774
=34 X X = 6.4 kPa
1.225 © 9007

The densities and temperature 7, were found in Appendix B.



Similitude

Periodic Flows

There are regions of flows in which periodic motions occur.
E.g., When fluid flows past a cylindrical object.

For these flows, we need to equate Strouhal numbers to model the

periodic motion. 7% V
m — E
wm /m wplp

Additional dimensionless parameters that may be equated.
In viscous flows > Reynolds number
In free-surface flows - Froude number
In compressible flows - Mach number



Similitude

A large wind turbine, designed to operate at 50 km/h, is to be tested in a laboratory by
constructing a 1:15 scale model. What airspeed should be used in the wind tunnel, what
angular velocity should be used to simulate a prototype angular speed of 5 rpm, and what
power output is expected from the model if the prototype output is designed to be 500 kW?

Solution

The speed in the wind tunnel can be any speed above that needed to provide a sufficiently
large Reynolds number. Let us select the same speed with which the prototype is to oper-
ate, namely, 50 km/h, and calculate the minimum characteristic length that a Reynolds
number of 10° would demand; this gives

Re — v 105 = (50 % 1000/3600) X I
v 1.6 X 10~*
Obviously, in a reasonably large wind tunnel we can maintain a characteristic length (e.g.,
the blade length) that large.
The angular velocity is found by equating the Strouhal numbers. There results
1

v. _ ¥ v

S 1=012m

—_ = S @,=w,=E=L =5X1X15=75rpm
w,l, w,l, ke

assuming that the wind velocities are equal.
The power is found by observing that power is force times velocity:

A e

W, oVl

I 4

or
1

1
I 1Y
W, =W, ;—;=soo><(—) =220 kW
i e 15




Normalized Differential Equations

Usually when using differential equations to describe the laminar/turbulent,
steady/unsteady, compressible/incompressible, confined/free-surface flows,
etc.> express in dimensionless/normalized form.

In vector form, the continuity equation and the Navier-Stokes equations are:
V-V=0
DV

p— =—Vp —pgVh + uV?V
Dt

In terms of kinetic pressure, the Navier-Stokes becomes:

o2V _ vy, +uv?v  Kinetic Pressure: Pressure
Dt resulting from fluid motion alone



Normalized Differential Equations

To normalize the differential equations, we need to select characteristic

quantities:
* — u = ) w* w S X i ) _w _ 2 Asterisks:
¢ = e— )T = — T = — = = = w— ZT = o . .
V V 0 / / / Dlmer_1§|onless
quantities
. . [
p’!‘ — _p’ t’f‘ — —
pV- v
Hence: V# = % + v"i + w*k
. _ U li e N
*Y * : V V V V
2 S —V*[); + LV*-V* Jd - Jd - Jd »
Dr* p / V*= i+ - ]+ - k
V¥.V* = () ax* oy* az*

a 2 a s (:) ~
=/’—I +/_—! +1_—l\ =J¥
dx dy 0z



Normalized Differential Equations

The Reynolds number as a parameter in the normalized Navier-Stokes

equation is: v
Re = ﬂ

73

If a portion of the boundary is oscillating, the Strouhal number should be
introduced.

Velocity of the fluid is the same as that of the rotating part.

v* = St r¥

w!
V

St =



Normalized Differential Equations

A boundary condition that introduces another parameter is the free-surface,
which introduces the Froude number.

I,/

N7

The Weber number is introduced for a boundary condition that involves
surface tension.

Fr =



Summary

- The most common flow parameters that use / as a characteristic length are:

Vpl V V A lw &
Re=i, BY =y, M——, EU=—pn St= —, We=—p
I JIE ¢ pV- V o
Confined flows: Re = ’ﬂ
n
V
Free-surface flows: Bp— -
Jig
High-Reynolds-number flows: Re > (Re) i
A V
Compressible flows: M=—
c
Periodic flows: St = o



Summary

The Navier-Stokes equation in terms of dimensionless variables is:

Py is the kinetic pressure.

All variables are dimensionless since the Reynolds number appears in the
equation.



