Flow in Pipe



Introduction

Study of viscosity on an incompressible, internal flow.
E.g., Flow in a circular pipe

The Reynolds number is a ratio of inertial forces to viscous
Re = — forces.
Important when dealing with viscous effects in a flow.

When the ratio is large, inertial forces dominate viscous
forces.
True when there are short, sudden geometric changes.
Viscous effects are important when surface areas are large.



Introduction

Vpl

Laminar Flow:
Re < 2000 for pipes
Re <1500 in a wide channel

At a sufficiently high Reynolds number, a turbulent flow occurs.



Entrance Flow and Developed Flow
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L (entrance length)

Entrance region of a laminar flow in a pipe or a wide rectangular channel.

Developed Laminar Flow - Flow where the velocity profile ceases to
change in the flow direction.

In the entrance region of a laminar flow, the velocity profile changes in the flow
direction.

|dealized flow from a reservoir begins at the inlet as a uniform flow.

Viscous wall layer grows over the inviscid core length, L; until the viscous stresses
dominate the entire cross section.



Entrance Flow and Developed Flow
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Entrance region of a laminar flow in a pipe or a wide rectangular channel.

- The profile develops due to viscous effects until a developed flow is achieved.
The inviscid core length is one-fourth to one-third of the entrance length L.

This depends on the conduit geometry, shape of the inlet velocity profile, and the Reynolds
number.



Entrance Flow and Developed Flow
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L (entrance length)

Entrance region of a laminar flow in a pipe or a wide rectangular channel.
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The entrance length equation for a
laminar flow in a circular pipe with
a uniform profile at the inlet. Re;, =
2000

For a laminar flow in a high-
aspect-ratio channel with a
uniform profile at the inlet. Re,,,, =
1500



Entrance Flow and Developed Flow
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Velocity profile development in a turbulent pipe flow.

- For a large Reynolds number (Re > 10°)
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Entrance Flow and Developed Flow

Transition nearx = 0
(Re > 300 000)

(Re = 10 000)
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Velocity profile development in a turbulent pipe flow.

/ Transition nearx = L

_— Laminar flow

X

Pressure variation in a horizontal pipe flow for both laminar and turbulent

flows. (From PhD Thesis of Dr. Jack Backus, Michigan State University)

For a flow beyond a large X, the pressure variation
decreases linearly with x.

Transition near origin-> Linear pressure variation begins
near L; > Pressure gradient in the inlet is higher than in the
developed flow region.

Transition near Ly=> (Low Re)—> Linear variation begins at
the end of the transition> Pressure gradient in the inlet is
less than that of developed flow.

Laminar flow—> Pressure variation is the same as that from
a large Reynolds number—> Pressure gradient is higher
than in the developed flow region.



Laminar Flow in a Pipe

Elemental Approach

To investigate incompressible, steady, developed

e laminar flow in a pipe
/ TS
D ¥
e / Elemental approach:
S . . .
/7 Z\ Infinitesimal control volume into which and
/ /e / (p +dp)xr? . .
iy from which fluid flows [Use momentum
u(r T2xmr d.x\ P eqUatIOn]
Infinitesimal fluid mass upon which forces
Developed flow in a circular pipe. act [Use Newton’s second IaW]

Since velocity profile doesn’t change in the x-direction:
Momentum Flux in = Momentum Flux out and the resultant force is zero
No acceleration of the mass element; resultant force is zero.



Laminar Flow in a Pipe

Elemental Approach

1 d(p + vh)

u(r) = (r—nt)

4 dx

The velocity distribution is parabolic.

Called a Poiseuille flow.

This is a laminar flow with a parabolic profile
in a pipe or between parallel plates.



Laminar Flow in a Pipe

Solving the Navier-Stokes Equations

streamlines 1 developed Navier-Stokes equation
steady  ||wall  noswir flow for flow in a circular pipe:

du Dy QU u .
p
r)r r d \’

_ap o*u u 1 9% 0%t
= [+y51n0+u(—+—;+7i,+ ] .
dx ar ror (T, AN .
symmetric  developed
flow flow
A . o)
u(r) = —\r- — g
(7 = 1)
1 d(p +vyh), , 3
= ——L (- %)
4 dx

This parabolic velocity distribution for flow in
a pipe is called a Poiseuille flow.

Developed flow
Streamlines are
parallel to the wall

No swirl

No acceleration of the
fluid particles as they
move in the pipe.



Laminar Flow in a Pipe

Pipe Flow Quantities

For steady, laminar, developed flow in a
circular pipe, the velocity distribution is:

& 1 d(p +vyh), , »
; S u(r) = =22V )
p 4 dx ‘ |
: The average velocity, V, is:
(p+dp)mr?
yrrid. {1
G Jai= Q = L u(r) 2zr dr
A Try J.

20 1dp+yh),,
- 1 d(p }’I,)(r_ 2V =
Iy J 4 dx 8u dx

_ 15 d(p + yh)

For a horizontal pipe, the pressure drop is as follows:

A SuVL For an inclined pipe, p is replaced
Ap = < with (p+yh)

27, L
Ap = =L

i



Laminar Flow in a Pipe

Pipe Flow Quantities

The friction factor, f :

Dimensionless wall shear valid for both
laminar and turbulent flow.

~7 ;{pl-"":
e 64 For laminar flow
2 Re in a pipe
Also, head loss (h,) with a dimension of length:
Ap SV P 2uLlV
— hl = — 7L e 2
Y D2g yD
Darcy-Weisbach equation Head-loss is directly
(valid for both laminar and proportional to the average

turbulent flows). velocity in a laminar flow.



Laminar Flow in a Pipe

A small-diameter horizontal tube is connected to a supply reservoir as shown in Figure E7.1.
If 6600 mm?® is captured at the outlet in 10 s, estimate the viscosity of the water.

Water
H=2m

1.0 mm dia.

§ — Datum

12m |

7

Figure E7.1

Solution

The tube is very small, so we expect viscous effects to limit the velocity to a small value.
Using Bernoulli’s equation from the surface to the entrance to the tube, and neglecting
the velocity head, we have, letting O be a point on the reservoir surface,

0 0
V)
g v
where we have used gage pressure with p, = 0. This becomes, assuming V'%/2g = 0 at the
tube’s entrance,

p=vyH = 9800 N/m* X 2m = 19 600 Pa

At the exit of the tube the pressure is zero; hence

% = @ = 16300 Pa/m (N/m’)



Laminar Flow in a Pipe

The average velocity is found to be

-9
o Q _ 6600 X100 _ jou
A mx 00074

Check to make sure the velocity head is negligible: ¥?*2g = 0.036 m compared with
ply =2 m, so the assumption of negligible velocity head is valid and our pressure

calculation is acceptable. Using Eq. 7.3.14, we can find the viscosity of this assumed
laminar flow to be

_ 1, Ap _ 0.0005%m* |

Ko ~ §x08ams'

16300 N/im®) = 6.06 X 10~* N - ¢/m?

We should check the Reynolds number to determine if our assumption of a laminar
flow is acceptable. It is

_ pVD _ 1000 kg/m® X 0.84 m/s X 0.001 m
= 6.06 X 107*N - s/m?

Re = 1390

where we use kg/m* = N -s¥m*. This is obviously a laminar flow since Re < 2000, so the
calculations are valid providing the entrance length is not too long. It is

Ly =0.068Re X D = 0.065 X 1390 x 0.001 = 0.09 m

This is approximately 8% of the total length, a sufficiently small quantity; hence the
calculation for viscosity is assumed acceptable.



Laminar Flow in a Pipe

Derive an expression for the velocity distribution and the flow rate between horizontal,
concentric pipes for a steady, incompressible developed flow (Figure E7.2).

1
1
p2nr dr—>| l<— (p+dp)2mrdr

e

(T + dr2a(r + dr)dx

Figure E7.2

Solution
Let us use an elemental approach. The element is a hollow cylindrical shell as sketched in
the figure. If we sum forces, we obtain

pmr dr — (p +dp)2wr dr + 727r dx — (7 +dr )27 (r +dr)dx =0

Simplifying, there results, neglecting the term of differential magnitude,
dp 7 dr d



Laminar Flow in a Pipe

Substituting + = —u duldr (duldr is negative near the outer wall where the element is
sketched) we have

dp _ (ldu i d*u
i Clrar T ar

= &i(,ﬂ)
rdr\ dr

Multiply both sides by rdr and divide by u, then integrate:
rﬂ = LQ"Z + A
dr  2p dx
Multiply both sides by dr/r and integrate again:

u(r) = lﬂ’-rz +AInr+B
4 dx

where 4 and B are arbitrary constants. They are found by setting u = 0 at r = 5 and at
r = n; that is,
1 dp

0= mz\_-l‘lz +AInn +B

O—Ezrz +AInnp +B



Laminar Flow in a Pipe

Solve for A and B:
P WL il s
4u dx In(r/n)
iy dp
B=—-41 i s
- 4 dx
Thus
1 dp Z-r5
e o JF pRg G de SRR I BREY
= o d[ st nm]

This is integrated to give the flow rate:

0= I: u(r)2amr dr

2
8udx|? In(r/R)

As 1 — 0 the velocity distribution approaches the parabolic distribution of pipe flow. As
1 — n, this distribution approaches that of parallel-plate flow. These two conclusions are
not obvious and are presented as Problem 7.48 at the end of this chapter.



Laminar Flow between Parallel Plates

For incompressible, steady, developed flow of a fluid between parallel plates, with the
upper plate moving with velocity U.

Elemental Approach

For an elemental volume of unit depth
(in the z-direction)

One dimensional flow, no acceleration,
developed flow.

2= 2 "
1 d( )4 7/’)(.}.-‘ S ap).t g)-'
2 dx “

oy u(y) =

Developed flow between parallel plates.



Laminar Flow between Parallel Plates

Elemental Approach

1 d(p+yh), , U
LX) (12— ay)+ Ly
2u dx a

u(y) =

- Couette Flow: A flow with a linear profile resulting from the motion of the
plate only.

- Poiseuille Flow: If the motion is only due to the pressure gradient (with U = 0).



Laminar Flow between Parallel Plates

Solving the Navier-Stokes Equations

For a developed flow between parallel plates:
Streamlines are parallel to the plates so u = u(y); v=w = 0.

developed

steady flow

d dll dll :
v Il
(H d' , Pu

_ 1d(p+vyh)
0> bi ix
_adp i / i 0’ u ad /’l TN 2 il
= %oy ;/ x This analysis applies to
developed wide the midsection away
Bow P from the side-walls

R U Double-integrating with
u(y) = -3(_1 —a.\)+;_1 u=0,y=0;u=U;
1 d(p +vyh)

= ——() — al)—£1 y=a.
2 dx 2 a



Laminar Flow between Parallel Plates

Simplified Flow Situation

Velocity distribution between fixed plates (U = 0) is:

+ 285
u( _") = LM(';“ —_ ay)
2 dx
0 =ju dA
Flow rate per unit width: ; J.i dp+vh) 2 @ dp+yh)
o 2p dx % e 12 dx
o 2
Average velocity: axl

_a d(p+yh)
120 dx




Laminar Flow between Parallel Plates

Simplified Flow Situation

Velocity distribution between fixed plates (U = 0) is:  u(y) = ﬁwn —ay)

The pressure drop in terms of average velocity (horizontal channel):

A 12uVL
For plates on an incline, p is replaced with (p + yh) -
) ] . _a dp
The maximum velocity occurs aty = 0.5a and is: = = ~T—=—=
O/ dX
. o 2
Hence, average and maximum velocities are related by: V =2=u
3 max
The pressure drop Ap over a length L of horizontal channel is:

0
a 2 dx



Laminar Flow between Parallel Plates

Simplified Flow Situation

* Friction factor, f: Dimensionless wall shear valid for both laminar and

turbulent flow.

The pressure drop in terms of friction

i
¥ = 1 D/’ factor is:
14 Ap .o

y 7 2a2g

:pV:

8 (_adl) o B (‘_3)('_12”V) _ 48y _ 48
2 dx pVi\ 2 a’ paV  Re

* Head Loss: Pressure drop due to friction as fluid flows through a pipe.

Aj B e

Y 7 2a 2g — k _f?.a 2g
e 12ulV Using definitions for Reynolds number and
E friction factor; seen that head loss is directly

proportional to average velocity.



Water at 20°C flows with a Reynolds number of 1500 between the 500-mm-wide, horizon-
tal plates shown in Figure E7.3. Calculate

(a) the flow rate,

(b) the wall shear stress,

(¢) the pressure drop over 3 m, and

(d) the velocity at y = 0.5 cm

Py —3im— 9 p-iv_kz,m
_—1—’

Figure E7Z3

Solution
Since the Reynolds mamber is 1500, the laminar flow equations are assumed applicable.
(a) Using the definition of the Reynolds mumber, the average velocity is found as follows:

1500 = 22
v

_1500v 1500 X 10~
ST SRR

¥ =0.14 m/s

Q=AV =0.125 % 0.12 X05 = 7.5 X 10* m*s
(b) Using Eq. 7.4.17, the pressure drop over length L is
Ap  12p¥  12X107° X 0.125

LS T 0.012 =104 Tahn
The shearing stress at the wall is found, using Eq. 7.4.22, to be
r,=28 _0012 54— 00c24P
2T s =

(¢) The pressure drop over 3 m is found to be
Ap =104L =104 X3 =31.2Pa



Laminar Flow between Parallel Plates

(d) The velocity distribution of Eq. 7.4.14 is

1 4
u(y) = —=

e w3
™ d\_(} ay)
1

(—10.4)(»* — 0.012y) = —5200()* — 0.012y)

T 2x107
where we have used dp/dx = —Ap/L. Aty = 5 mm, the velocity is

u = —5200 (0.005 — 0.012 X 0.005) = 0.182 m/s

We have used three significant digits since the fluid properties are assumed known to three
significant digits.



Laminar Flow between Parallel Plates

Find an expression for the pressure gradient between two parallel plates that results in a
zero shear stress at the lower wall, where y = 0; also, sketch the velocity profiles for a top
plate speed of U with various pressure gradients. Assume horizontal plates.

e

i _wU @ _,
dx dx
ey 20
dx a2 dx .
[ I
Figure E7.4

Solution
The velocity distribution for plates with fhe top plate moving with velocity U is given by
Eq. 7.4.17. Letting dh/dx = 0, we have

1 4 U
w(y) = — () —ay) + —y
2 dx a

The shear stress is



Laminar Flow between Parallel Plates

If 7 =0 at y = 0, then du/dy = 0 at y = 0 and the pressure gradient is
dp _ 2pU

dx @

If dpldx is greater than this value, the slope du/dy at y = 0 is negative and thus the
velocity u will be negative near y = 0. If dp/dx = 0, we observe that a linear velocity
distribution results, namely,

U
My)i= =¥
a

If dpldx is negative, u(y) is greater at each y-location than the linear distribution since
() — ay) is a negative quantity for all y’s of interest.

All of the results above can be qualitatively displayed on a sketch of u(y) for several
dpldx as shown in Figure E7.4.



Laminar Flow between Rotating Cylinders

‘df
(Tt +dr2x(r+dr)L

(a) (b)

Outer
cylinder

Inner
cylinder

Flow between concentric vertical cylinders: (a) basic flow variables: (b) element
from between the cylinders.

Fully developed, steady flow between concentric, rotating cylinders.
Laminar flow is valid up to Re = 1700

Above this, a secondary laminar flow may develop, and eventually a turbulent
flow develops.



Laminar Flow between Rotating Cylinders

Elemental Approach

Neglecting body forces (vertical cylinder).

Pressure doesn’t vary with 8; resultant torque acting on an element (thin
cylindrical shell) is zero as there is no angular acceleration.

2arL Xr —(r +d™)2m (r +dr)LX (r +dr) =0 ——M» 27+ri{{—7=0
I
e e _Ii With the constants to be found by
5t 2 r evaluating the boundary conditions:

O Uy = hiw atr = n,and v, = nw,atr =n,
Inner
cylinder

27
B Wn (o —w,)
2 2 2 2
N =0




Laminar Flow between Rotating Cylinders

Solving the Navier-Stokes Equations

Steady, laminar flow between concentric cylinders.
Hence, circular streamlines o, = ov. = 0. v, = v,(r) only, and dp/od = 0O

symmetric
steady flow

( d ()I’ L U ()2 (ig /

ot dr “loz
1o & L) ] (h.’ d d %0
r jy ar’ r ()r 3 r’ fof

0 symmetnic long symmetric
flow cylinders flow

Cancelling the terms and double-integration C o o,(r) = 74 g
leads to the same equations as in the 2 r
previous slide.
4:2’“‘0 _r‘wl B_rlr(wl w)
e r[: I’w: = r1



Laminar Flow between Rotating Cylinders
Flow with the Outer Cylinder Fixed (w, = 0)

E.g., For a shaft rotating in a bearing.

2 2 . 1 d (v,
Velocity Distribution: o, = "—“’(’— - r] Shearing stress: 71 — _[”’E(,—f’”
B-r\r e
ok nne N 2urio,
"1: ,,:: = ,,:: ’,:: = ,,::
. T =T1,4n
Torque, T to rotate the inner P I
) _ 2prne, , _ dmun’r’ Lo,
cylinder of length, L: b= il e
L —h L —h
Power to rotate the shaft W =Toy Power needed to overcome resistance of
(multiply torque by rotational = M viscosity = Leads to an increase in internal
speed): T energy and temperature of the fluid.



Laminar Flow between Rotating Cylinders

Estimate the viscosity of an oil contained in the annulus between two 25-cm-long cylin-
ders, as shown in Figure E7.6. The outer stationary cylinder is 80 mm in diameter. The
78-mm-diameter inner cylinder rotates at 3800 rpm when a torque of 1.2 N -m is applied.
The specific gravity of the oil is 0.85. Neglect any torque due to the cylinder ends.

Solution
Assuming that the Reynolds number is less than 1700, Eq. 7.5.19 provides

_T(%-nr)
T
1.2 N-m(0.04* —0.039*) m*

e = 0.0312 N-s/m?
4 X 0.0 m* X 0.039* m* X 0.25 mx (3800 X 27/60) rad/s -

Check the Reynolds number using v = u/p:

id _ (3800 X 277/60) rad/s X 0.039 m X 0.002/2 m

R =
i 0.0312/(1000 X 0.85) ms

=423

This is less than 1700 so the calculation is acceptable.



Laminar Flow between Rotating Cylinders

Show that as the inner cylinder radius of Figure E7.6 approaches the outer cylinder radius
the velocity distribution approaches the linear distribution between parallel plates with

one plate moving and a zero pressure gradient. This is Couette flow.
r

Figure E7.6
Solution

For this problem we will let @, = 0; the velocity distribution (7.5.17) is
2 2
L ey [ T
o = F2{ % 1)

_ _nhwe 5 —r 2”12‘01 (rz—r)r2+r
ior r E-re 0




Laminar Flow between Rotating Cylinders

Introduce the independent variable y, measured from the outer cylinder defined by
r +y = (see Figure 7.6); let 8 =, — 5. Then the above can be written as

ren—r) n+r
n—nln+n) r

ve(r) = (

_ Koy 2n—y
o(r,+n) n—y

As the inner radius approaches the outer radius we can write r; = r,. Lettingr, =5 = R
we have , + 1 = 2R and

=2
R}
since y << R. The velocity distribution then simplifies to
Rewyy Rw,
) = WD) = ey
»0) = "R .

This is a linear distribution and is a good approximation to the flow whenever << R.




Turbulent Flow in a Pipe

Developed turbulent flow in a circular pipe is of interest in practical
applications (most flows in pipes are turbulent).
Laminar flows have been seen in Reynolds numbers of 40,000 in a pipe flow.
In standard conditions, Rey,, = 2000.

All three velocity components are nonzero.

:
) L F=-L.[ u(t) dt
Need time-average quantities. T Jo

u v w

i Jﬁh' i -

u

(a) (b) (c)

Velocity components in a steady turbulent pipe flow: (a) x-component velocity
u: (b) r-component velocity v: (c) f-component velocity w.



Turbulent Flow in a Pipe

Show that ' = 0 and g—: = g—l: for a turbulent flow.

Solution
To show that 2’ = 0 we simply substitute the expression (7.6.1) for u(t) into Eq. 7.6.2 and

obtain

T — ’
Jo (T +u’)dt
0 0

[Ta ar+ % [T at

Subtracting # from both sides results in
=0

Now, let us time average the derivative du/d y. We have

Gu_ 1 ("ou
v TJoay
ad ,[T ) d —
= — | — d( = —
6y(T 0 “ ayl
since 7T'is a constant. Thus
ou om




Turbulent Flow in a Pipe

Differential Equation

i < —— T2q7 dx
» ro
\) v

- 00000 o i

> 3 <

_ﬁ: r v
u(r) S 4 dA

[ |

Turbulent flow in a horizontal pipe.

- The differential x-force from the random motion of a fluid particle through an

incremental area dA is: — - U'is the negative change in x-
P component velocity.

- The turbulent shear stressis. . =" = "’

- Time-average turbulent shear stress is the apparent shear stress. 7, . = —pu'v’

turb



Turbulent Flow in a Pipe

Differential Equation

——— T2 dx
— r
\ 0
\) v
- 00000 o i
> X
_ﬁ:‘ r U'
ULr) S5 £ A
[ |

Turbulent flow in a horizontal pipe.

- The total shear stress (from viscosity and momentum exchange) due to
laminar and turbulent effects would be:

——

-
[

<)
-

lam turb

ou o
= p— — pu'v
dy

- The shear stress related to the pressure gradient is: ¥ — _rdp _rap
2 dx 2.7



Turbulent Flow in a Pipe

Differential Equation g
q 4\ - 724w dx

| Unax ;"I; 1 par: = (p+dp ,>;rr2

o oy . us i}
.l r v'
u(r) / ! 4

‘7/ y | -
" B B

Centerline

o Turbulent flow in a horizontal pipe.

T=Tpam+ T b

Tp

« Shear stress distribution is linear for turbulent and laminar flow.
« Turbulent shear goes to zero at the wall.
- Total shear at the centerline is zero.



Turbulent Flow in a Pipe

Differential Equation

Turbulent flow in a horizontal pipe.

formed from equations on the previous slide.

! (llp . W i ({E

2 dx g b dr
- Hence: — =
rd du
==L =p(v + 1) ™

2 dx dr

To find the time-average velocity distribution, the differential equation is

The term u/v’ cannot be determined

analytically.
Have Eddy viscosity: (Parameterization

of Eddy Momentum Flux, Reynolds
stresses)

— di
Fooy
dy



Turbulent Flow in a Pipe

Differential Equation .

a(r) 4
|

Turbulent flow in a horizontal pipe.

For turbulent flow, it is helpful to define a mixing length |,,:
Distance a particle moves before interacting with another particle.

du

— 2|==
n m (l.l‘

The correlation coefficient K,, is a normalized turbulent shear stress.
Has limits of +1

With time-averaged quantities. K, = u'v’




Turbulent Flow in a Pipe

Note that in Figure 7.9b there is a region near the wall where the turbulent shear is near
its maximum and is relatively constant, as shown in the expanded view of Figure E7.8,
and the viscous shear is quite small. Assume that the mixing length is directly proportional
to the distance from the wall. With this assumption show that #( y) is logarithmic in this
region near the wall.

b

Tturb

Relatively
constant Ty

————
——— —
—— —

Figure E7.8

Solution

If the viscous shear is negligible (as it is away from the thin wall layer), we have, combining
Eqgs. 7.6.5 and 7.6.8, and 7.6.10,

_ di  (dm\
T =pnd—y = pl,, &



Turbulent Flow in a Pipe

Now, if T, = const. = ¢, and we assume, as given in the problem statement, that

Im — Czy

there results
du r
o = pcir( %)
dy

or
di

Y e Oy

dy
where ¢; = m This is integrated to yield
w(y)=c;Iny +¢
Hence, with the foregoing assumptions we see that a logarithmic profile is predicted for
the region of constant turbulent shear near the wall. This is, in fact, observed from exper-

imental data: so we conclude that the above assumptions are reasonable for a turbulent
flow in a pipe.



Turbulent Flow in a Pipe

Velocity Profile

Viscous Viscous
wall layer e = Average wall

roughness height

o, = Viscous wall
layer thickness

(a) (b)
(a) A smooth wall and (b) a rough wall.
Hydraulically smooth: The viscous wall thickness (d,) is large enough that it

submerges the wall roughness elements—> Negligible effect on the flow
(almost as if the wall is smooth).

If the viscous wall layer is very thin-> Roughness elements protrude off the
layer-> The wall is rough.

The relative roughness e/D and Reynolds number can be used to find if a pipe is
smooth/rough.



Turbulent Flow in a Pipe
Velocity Profile

y y
e = Average wall
roughness height

o, = Viscous wall
layer thickness

(a) (b)

(a) A smooth wall and (b) a rough wall.

For a smooth wall, there are two regions of flow (wall and outer regions).

Wall region: Characteristic velocity = shear velocity u, = \/?;

Characteristic length = viscous length ;’—

7 u.y u.y

= (\"iSC()US \va“ |ayer) )= = = 5 DlmenS|on|eSS VeIOC|ty
i . distribution in the wall region
for a smooth pipe
u u.y : A & LG ST i
— =244 In— + 409 (turbulent region) 30 < —, = < (.15

u, v V g



Turbulent Flow in a Pipe
Velocity Profile

y y
e = Average wall
roughness height

o, = Viscous wall
layer thickness

@ (b)

(a) A smooth wall and (b) a rough wall.

- For rough pipes, the viscous wall layer doesn’t play an important role.
Turbulence starts from the protruding wall elements.

- Characteristic length is the Average roughness height e

= : ; Dimensionless velocity
= 2.44 ln? + 85 = 0.15 profile for the wall region of
" a rough pipe

T



Turbulent Flow in a Pipe

Velocity Profile

¥y y

e = Average wall
roughness height

o, = Viscous wall
layer thickness

(@) (b)

(a) A smooth wall and (b) a rough wall.

- In the outer region, characteristic length is r,

Lo ¥ _244m2 +08 £=<0.15 (outer region)
u, y i

Velocity defect (u,,,, — %) is normalized
with u; Relation is for both smooth and
rough pipes.



Turbulent Flow in a Pipe
Velocity Profile

e = Average wall
roughness height

o, = Viscous wall
layer thickness

(a) (b)

(a) A smooth wall and (b) a rough wall.

- The wall and outer regions may overlap. The maximum velocity is:

Uy urn . .
—= =244 In — +57 (smooth pipes)
7 v
u I :
/% =244 In = +93 (rough pipes)

U €

T



Turbulent Flow in a Pipe

Velocity Profile

P Outer region
. Wall region
Viscous Increasing Re
~ layer
25 -
u
uz 201
15 —
10 —
AT wy
ugp Vv
! 1 ! |
5 10 30 100 1000 10,000

ury/v

Wall Region (Empirical relations for
turbulent flow in a smooth pipe)
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Velocity Profile

Upax— U

ur

(S 4 (=) o0

0.01 0.1 0.15 1.0

¥/ry

Outer Region (Empirical relations
for turbulent flow in a smooth pipe)
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Turbulent velocity profile.

The power-law profile describes the turbulent flow velocity distribution in a pipe:
Simpler form _ i
B (l)

Average velocity is then calculated to be:

2n? "
(n it D2nt1)

V = ;, Jroﬁ(_r)ﬁlfzrr dr =
wr Y0

n: Depends on the friction factor f 1 Table 7.1 Exponent n for Smooth Pipes

= " =
. Re=VDlv 4x10° 10° 10f >2X%10°
(Reynolds number and pipe wall Jf :

h 6 7 9 10
roughness)
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L '
T Turbulent
\—
I
|
S b e e
: r
el [ fee
! = Laminar — N
o y
B D | 7
|

Turbulent velocity profile.

- The power-law profile for turbulent velocity flow distribution:
Cannot be used to obtain the slope at the wall (infinite for all n).
Cannot be used to predict wall shear stress.



Turbulent Flow in a Pipe

Water at 20°C flows in a 100-mm-diameter pipe at an average velocity of 1.6 m/s. If the
roughness elements are 0.046 mm high, would the wall be rough or smooth? Refer to
Figure 7.10.

Solution

To determine if the wall is rough or smooth, we must compare the viscous wall layer
thickness with the height of the roughness elements. So, let’s find the viscous wall layer
thickness. From Figure 7.11 the viscous layer thickness is determined by letting u,_y/v = 5,
where y = §,. First, we must find «_. The Reynolds number is
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The wall shear is calculated from Eq. 7.3.19:
1

T '8‘PV2f

X 1000 X 1.6* X 0.018 = 5.8 Pa

1
8

The friction velocity is found from the definition of the shear velocity:

d p
= ‘/5—8 = 0.076 m/s
1000

This allows us to calculate the viscous wall layer thickness using y = §,:

0
u,
_5X 10~ m?/s
0.076 m/s

B,
=6.6X10°m or 0.066 mm

Since the roughness elements are only 0.046 mm high, they are submerged in the viscous
wall layer. Consequently, the wall is smooth (see Figure 7.10a). If the pipe were made of
cast iron with e = 0.26 mm, the wall would be rough.

Note that the viscous wall layer, even at this relatively low velocity, is about 0.1% of
the radius. The viscous wall layer is usually extremely thin.
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The 40-mm-diameter smooth, horizontal pipe of Figure E7.10 transports 0.004 m¥s of
water at 20°C. Using the power-law profile, approximate (a) the friction factor, (b) the
maximum velocity, (c) the radial position where u = ¥/, (d) the wall shear, (e) the pressure
drop over a 10-m length, and (f) the maximum velocity using Eq. 7.6.16.

Vv

| —
4cm
- |
W,
Figure EZ.10
Solution
(a) The average velocity is calculated to be
0.004
= 2 = — Y
A 7 x002? 18 s
The Reynolds number is
R ___2___ 3.18 X 0.04 =1.27 % 10°
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(b) The maximum velocity is found using Eq. 7.6.20 to be
= MV

Umax 2”2
= % X 3.18 = 3.84 m/s

(c) The distance from the wall where ¥ = ¥ = 3.18 m/sisfound using Eq. 7.6.19 as follows:

The radial position is thus

(d) The wall shear is found using Eq. 7.3.19 and is
1
(= §PV2f
1
8

% 1000 x 3.18* X 0.018 =23 Pa
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(e) The pressure drop is calculated using Eq. 7.6.18 with Ap/L = —dpldx to be
o 27,L
o
_2x23x10
002
(f) To use Eq. 7.6.16 we must know the shear velocity. It is

=23000Pa or 23 kPa

=
| [T
p

= | = 0152
1000

We then find u, to be, usingv = 107* m?/s,

0.152 X 0.02
107¢
This is the same as that given by the power-law formula in part (b). This answer is consid-
ered to be more accurate if it differs from that of Eq. 7.6.20. Note that the experimental

data do not allow for accuracy in excess of three significant digits, and often to only two
significant digits.

Upay = 0.152(2.44 In + 5.7) = 3.84 mfs
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7.6.3 Losses in Developed Pipe Flow

Most calculated quantity in pipe flow is the head loss.

b — A(p + yh)
Allows pressure change to be found—-> pump selection. L = y
Derived from energy equation.
A £ y? Head loss from wall shear in a developed flow is
! FIE

D 2g related to the friction factor(f).
- f=flp,4,V,D, e)
+ Darcy-Weisbach equation
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= Relative roughness
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Losses in Developed Pipe Flow

Moody diagram is a plot of experimental data relating friction factor to the

Reynolds number.
For fully developed pipe flow over a range of wall roughnesses.

For a given wall roughness—> There is a large enough Re to get a constant friction
factor-> Completely turbulent regime.

For smaller relative roughness—> As Re decreases, friction factor increases—>
Transition zone—> Friction factor becomes like that of a smooth pipe.

For Re < 2000-> The critical zone couples the turbulent flow to the laminar flow and
may represent an oscillatory flow that alternately exists between turbulent and laminar
flow.

Assume new pipes—> As a pipe gets older, corrosion occurs changing both the
roughness and the pipe diameter.
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Losses in Developed Pipe Flow

Smooth pipe flow: e 0.86 In Re\/_? - 0.8 Empirical equations for
\/.7 Re > 4000
| _
Completely turbulent zone: —— = —0.86 In
JF 3.7D
Transition zone: L = —0.86 In g =
Jf 31D Reyf

Colebrook equation: The equation that couples the smooth pipe equation
to the completely turbulent regime equation.
Smooth pipe flow: e = 0; Completely turbulent zone: Re = «
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Losses in Developed Pipe Flow

Category  Known Unknown

1 O De v h;
2 D, e, V. hL Q
3 O,e,v,h; D

- Three types of problems for developed turbulent flow in a pipe:
One: Straightforward. Needs no iteration when using the Moody diagram.

Two and Three: Engineering design situation. Needs an iterative trial-and-error
process.
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Losses in Developed Pipe Flow

To avoid trial-and-error and the Moody diagram, use:

2 0\ e i 3
h, = 1.07Q L [ln £ 4'62(£J ] 107° <el/D <10
gD || 3.7D o) || 3000 < Re < 3 X 10°

5 0.5 5 0.5
0= —0.965(&) T L L] Re > 2000
L 37D gD,

s \4.75 5.2 70.04
LO'] E ] } 107¢ < e/D < 1072

D = 0.66 e”"(—~ + \’Q‘“[— ;
gh; gh, 5000 < Re < 3 X 108

Developed by Swamee and Jain (1976) for pipe flow.

First and last equations are accurate to within 2% of the Moody diagram. The
middle equation is as accurate as the Moody diagram.
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Water at 20°C is transported for 450 m in a 38-mm-diameter wrought iron horizontal pipe
with a flow rate of 2.75 L/s. Calculate the head loss and the pressure drop over the 450 m
length of pipe, using (a) the Moody diagram and (b) the alternate method.

Solution
(a) The average velocity is

The Reynolds number is

Re= — = 2222 22 — 92300

Obtaining e from Figure 7.13, we have, using D = 0.038 m,

e _ 0.000046 — 0.0012
D 0.038

The friction factor is read from the Moody diagram to be

f =0.023
The head loss is calculated as
2
- Lha
D 2g
450 (2.43)°

=0.023 —— = 82
0.0382X98 —
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This answer is given to two significant numbers since the friction factor is known to at
most two significant numbers. The pressure drop is found by Eq. 7.6.22 to be

Ap = yh,
= 9810 N/m® X 82 = 804420 N/m* or 804.4kPa

(b) The alternate method for this Category 1 problem uses Eq. 7.6.29, with D = 0.038 m:

- 6 0972
-~ | 07:00275 x450{|n[0.(3)0712 = 4.62[10 X 0.038] ”

9.81 X 0.038° 0.00275
=82

This much simpler method provides the same value as that found using the Moody
diagram.



Turbulent Flow in a Pipe

A pressure drop of 700 kPa is measured over a 300-m length of horizontal, 100-mm-
diameter wrought iron pipe that transports oil (S = 0.9, v = 10~ m?/s). Calculate the
flow rate using (a) the Moody diagram, and (b) the alternate method.

Solution
(a) The relative roughness is

e _ 0.046

3 == W = 0.00046
Assuming that the flow is completely turbulent (Re is not needed), the Moody diagram
gives

f =0.0165

The head loss is found to be

Ap _ 700000 N/m?
Y 9800 N/m* X 0.9

The velocity is calculated from Eq. 7.6.23 to be

- (28D, “ _(2x98m/s’ X 0.lm X 79.4m
v X m
7L 0.0165 X 300

This provides us with a Reynolds number of

_VD _56lm/sx0.1m _ ;
Re —T— 10" mi/s =5.61x 10
Using this Reynolds number and e/D = 0.00046, the Moody diagram gives the friction
factor as

hL = =794m

12
] = 5.61m/s

f =0.023
This corrects the original value for £. The velocity is recalculated to be

. (2 X 9.8 X 0.1 X 794
ZZ 0.023 x 300

12
) =4.75 m/s
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The Reynolds number is then
Re = %’fﬁ” = 4.75 X 10°

From the Moody diagram f = 0.023 appears to be satisfactory. Thus the flow rate is
Q=VA=475X 7 X 0.05 =0.037 m’/s

Only two significant numbers are given since fis known to at most two significant numbers.
(b) The alternative method for this Category 2 problem uses the explicit relationship
(7.6.30). We can directly calculate Q to be

9.8 X 0.1° x 794\ [ 0.00046 (3.17 x 107 x 300"
0 = —0.965 In +
: 300 37 9.8 X 0.I° X 79.4

= —0.965 X 5.096 X 107™* X (—7.655) = 0.038 m7s

This much simpler method produces a value essentially the same as that obtained using
the Moody diagram.
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Drawn tubing of what diameter should be selected to transport 0.002 m*/s of 20°C water
over a 400-m length so that the head loss does not exceed 30m? (a) Use the Moody dia-
gram and (b) the alternative method.

Solution
(a) In this problem we do not know D. Thus, a trial-and-error solution is anticipated. The

average velocity is related to D by

0.002 _ 0.00255
aD*4 D

V:gz
A

The friction factor and D are related as follows:

LV?
= e—
5 fng
400 (0.00255/D3)?
3'o"fp 2 %X9.8

~D'=442X10°¢f
The Reynolds number is

_VD _ 0.00255D _ 2550
v D?* x107¢ D
Now, let us simply guess a value for fand check with the relations above and the Moody

diagram. The first guess is f = 0.03, and the correction is listed in the following table.
Note: the second guess is the value for f found from the calculations of the first guess.

i D(m) Re elD f{Figure 7.13)
0.03 0.0421 6.06 x 104 0.000036 0.02
0.02 0.0388 6.57 x 10* 0.000039 0.02

Re
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The value of f = 0.02 is acceptable, yielding a diameter of 38.8 mm. Since this diameter
would undoubtedly not be standard, a diameter of

D = 40 mm

would be the tube size selected. This tube would have a head loss less than the limit of
Ay =30 m imposed in the problem statement. Any larger-diameter tube would also satisfy
this criterion but would be more costly, so it should not be selected.

(b) The alternative method for this Category 3 problem uses the explicit relationship
(7.6.31). We can directly calculate D to be

04
400 % 0.0022 \*™ 400
o ; -641.25 o i e
D 0.66[(15)(10 ) ( S ] + 107 X 0.002 (9.8”30)

= 0.66[5.163x107% + 2.102 X 107¥]"* = 0.039 m

Hence D = 40 mm would be the tube size selected. This is the same tube size as that
selected using the Moody diagram.
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Losses in Noncircular Conduits

Can approximate for conduits with noncircular cross sections:

Using hydraulic radius R A: Cross-sectional area

R= o P: Wetted perimeter-> Perimeter where the
P fluid is in contact with the solid boundary
E.g., for a circular pipe:
Hydraulic radius R =r,/2
Re — 4VR relative _ €
€= v roughness ~— 4p

The head-loss then becomes:

!
y
(]

L
| Ry et
" =/ IR

o

g
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Air at standard conditions is to be transported through 500 m of a smooth, horizontal,
300 mm X 200 mm rectangular duct at a flow rate of 0.24 m’/s. Calculate the pressure drop.

Solution
The hydraulic radius is

R=£= 0.3x0.2 e
P (03+0.2)%x2
The average velocity is
0 0.24
V==2=——F "—=40m/
4 tavoz e
This gives a Reynolds number of
R 4VR _ 4 X4X0.06 — 64 % 10°
v [ESERET
Using the smooth pipe curve of the Moody diagram, there results
f =10.0196
Hence,
2 2 fod
P L R T o WO 6, 5 RS U
4R 2g 4 X 0.06m 2 X 9.8 m/s?

The pressure drop is
Ap =pgh, =1.23 X 9.8 X 33.3 =402 Pa
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Minor Losses in Pipe Flow

Sometimes minor losses (from fittings that cause additional losses) can
exceed frictional losses.

Expressed in terms of a loss coefficient K.

2
2g

h[_ =K

K can be determined experimentally.
If there is an expansion from area A, to area A:

N %
A ) 2g

For a sudden expansion in area:
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Minor Losses in Pipe Flow

A loss coefficient can be expressed as an equivalent length L, of pipe:

Lk
/

For long segments of pipe, minor losses can usually be neglected.
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If the flow rate through a 100-mm-diameter wrought iron pipe (Figure E7.15) is 0.04 m’/s,
find the difference in elevation H of the two reservoirs.

@ Screwed
= globe valve
2 (fully open) }

3
gl
©

20 m I 10m
I I
' 20 m
Screwed 7 =
elbows 1
100-mm-dia.
wrought iron pipe
Figure EZ15

Solution
The energy equation written for a control volume that contains the two reservoir surfaces

(see Eq. 4.5.17), whereV, =V, =0 and p, =p, =0, is
O — 22 — Zl + hL

Thus, letting z; — z, = H, we have

V2 )3
H=(Kia + K 42K Ky — -+ f=—
( al elbow cdt)zg szg
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The average velocity, Reynolds number, and relative roughness are

V=%=——""_ —509mhs
A o X 0.05

Re =0 = D0 Lo
v 10
& = U046 a0ie
D 100

From the Moody diagram we find that
f =0.0173

Using the loss coefficients from Table 7.2 for an entrance, a globe valve, screwed
10-cm-diameter standard elbows, and an exit there results
5.09? 50 5.09°

axos OB %08

H=(05+57+2X0.64+1.0)
=112+114=226m

Note: The minor losses are about equal to the frictional losses as expected, since there are
five minor loss elements in 500 diameters of pipe length.
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Approximate the loss coefficient for the sudden contraction 4,/4, = 2 by neglecting the
losses in the contracting portion up to the vena contracta and assuming that all the losses
occur in the expansion from the vena contracta to 4, (see Figure 7.16). Compare with
that given in Table 7.2.

Solution
The head loss from the vena contracta to area 4, is (see Table 7.2, sudden enlargement)

(-4}
h=|1—-—| =

4, ) 2g
Continuity allows us to write (V. is the velocity at the area 4,)

V=ﬁy2

¢
<

Thus, the head loss based on ¥ is

so the loss coefficient of Eq. 7.6.35 is

2 2
(-4
4, ) \ 4,
Using the expression of C, given in Figure 7.16, we have

3
e G 0.38[1) =0.67
4, 2

Finally,
1
K=(1-0.67"— =024
( ) 0aE i

This compares favorably with the value of 0.25 given in Table 7.2.
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Hydraulic and Energy Grade Lines

Energy equation is written in a form where the terms have dimensions of

length:

s_sz_Vlz_*_Pz_Pl_l_

g 2g ¥

22 —Zl +hL

The Hydraulic and Energy grade lines for piping systems can hence be
defined:
Hydraulic Grade Line (HGL): Located a distance p/y above the center of the
pipe.
Energy Grade Line (EFL): Located a distance V2/2g above the HGL.
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Hydraulic and Energy Grade Lines

‘hl. Jvalve

Valve

Hydraulic grade line (HGL) and energy grade line (EGL) for a piping system.
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Hydraulic and Energy Grade Lines: NOTES

As V-0, HGL and EGL approach each other. (For a reservoir, they are identical and
lie on the surface.)

EGL and HGL slope downward in the flow direction (due to head loss).
Greater the loss per unit length, greater the slope.

HGL and EGL suddenly change when a loss occurs due to sudden geometry changes.
Jumps when useful energy is added (pump).
Drops when useful energy is extracted (turbine).

If the HGL passes through the centerline of the pipe—> pressure is zero.
If the pipe is above the HGL-> vacuum condition.
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Water at 20°C flows between two reservoirs at the rate of 0.06 m¥s as shown in
Figure E7.17. Sketch the HGL and the EGL. What is the minimum diameter D, allowed
to avoid the occurrence of cavitation?

S OJ

(section 2 is just before
the enlargement)

Figure E7Z.17

Solution

The EGL and the HGL are sketched on the figure, including sudden changes at the
entrance, contraction, enlargement, and the exit. Note the large velocity head (the dif-
ference between the EGL and the HGL) in the smaller pipe because of the high velocity.
The velocity, Reynolds number, and relative roughness in the 20-cm-diameter pipe are
calculated to be

0 0.06
===—=19
A 7 X0.20%4 R
R _2=1.9l><0.2=3.8x10s
v 10°°
e 0.26
B—W—O.OOB
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Thus f = 0.022 from Figure 7.13. The velocity, Reynolds number, and relative roughness
in the smaller pipe are

;. 006 _ 0.0764
" aDi4~ D:
Re, =00764 X Dy _ 76400
D2 % 107 D,
e _ 0.00026
D, D,

The minimum possible diameter is established by recognizing that the water vapor pres-
sure (2450 Pa absolute) at 20°C is the minimum allowable pressure. Since the distance
between the pipe and the HGL is an indication of the pressure in the pipe, we can conclude

that the minimum pressure will occur at section 2. Hence the energy equation applied
between section 1, the reservoir surface, and section 2 gives

0
2 2 2
5£+ﬂ+z,—y’+"’ /,{4-1(,,2 VL+/, +n Lk
g 7 2g v 2¢ M2g 2g Dg 2g

where the subscript 4 refers to the 20-cm-diameter pipe. This simplifies, using absolute
pressure, to

0.0764/D3 \’
101ooo+20_( ‘!(1 +025 4+ ] 2450

9810 T 2x981 9810
30\ 1912
(0 2t omﬁ)z % 9.81
98 600 = f.

D:
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where we have used K_, = 0.5 and assumed that K, = 0.25. This requires a trial-and-
error solution. The following illustrates the procedure.
Let Dy = 0.1m. Then /Dy = 0.0026 and Rey = 7.6 X 10°, Therefore, f = 0.026:

98 600 X 12 500 + 52 000
Let Dy = 0.09m. Then ¢/Dy; = 0.0029 and Re; = 8.4 X 10°, Therefore, f = 0.027:
98 600 X 19 000 + 91 000

We see that 0.1 m is too large and 0.09 m is too small. In fact, the value of 0.09 m is only
slightly too small. Consequently, to be safe we must select the next larger pipe size of 0.1 m
diameter. If there were a pipe size of 95 mm diameter, that could be selected. Assuming
that that size is not available, we select

D; =100 mm

Note that the assumption of a 2:1 area ratio for the contraction is too small. It is actually
4:1. This would give K, = 0.4. After a quick check we conclude that this value does not
significantly influence the result.
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Simple Pipe System with a Centrifugal Pump

If the flow rate of the pump is not given—> Not straightforward.
The head produced by the pump and the efficiency depend on the discharge.

Need the characteristic curves of the pump.
Can relate flow rate Q, and pump head Hp.

Hy = ¢ + 60’

System Demand Curve:
Energy equation relating
pump head to an unknown

flow rate.

Head Hp

Hp ..' e

*
. Operating
* -
point

"""" System demand

Efficiency 7p

curve

Q (flow rate)

Pump characteristic
curve (Intersection is the
operating point of the
system)
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Estimate the flow rate in the simple piping system of Figure E7.18a if the pump charac-
teristic curves are as shown in Figure E7.18b. Also, find the pump power requirement.

0 100

& el9m B H —: =
80 < T 8o
,a = N\ ’l’ -
Woought @ =l 1% 5
roug o B -1 P
200 mm it L i
20— — 20
Water i 1 | 1 1 1 | 1 1
2°C 0.1 02 03
= 400 m Q (mdls)
(a) (b)
Figure E7Z.18

Solution
We will assume that the Reynolds number is sufficiently large that the flow is completely
turbulent. So, usinge/D = 0.046/200 = 0.00023, the friction factor from the Moody dia-

gram is

f=0014
The energy equation (see Eq. 7.6.40), with H, = —W,/mhg, applied between the two
surfaces, yields
0
VAV
H = 7’A+z,—z,+9&+hl
2 Y

or

L\
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400 ) 0*

=30 + (o.s +1.0 +0.014 -
02/2 %98 % [1r X 0.12]

= 30+15200°

This equation, the system demand curve, and the characteristic curve H (Q) of the pump
are now solved simultaneously by trial and error. Actually, the curve could be plotted on
the same graph as the characteristic curve, and the point of intersection, the operating
point, would provide Q. Try Q = 0.2 m/s: (Hr)uegy = 91 m, (Hr)ge = 75m. Try
Q = 0.15m"/s: (Hp)mergy = 64 m, (Hp)or = 75 m. Try Q = 0.17 m*°5: (Hp) siergy = 74 m,
(H.) 4 = 76 m. This is our solution. We have

0=0.17m’k
Check the Reynoldsnumber:Re = DQ/Av = 0.2 X 0.17/(7 X 0.1* X 107°) = 1.08 X 10%,
This is sufficiently large, but marginally so.
The power requirement of the pump is given by Eq. 4.5.26:

W, = QvyH,
Nr
_ 0.17 m*5 X 9800 N/m* X 75 m
a 0.65
where the efficiency 7, = 0.65 is found from the characteristic curve at Q = 0.17 m¥s.
Note: Since L/D = 1000, minor losses due to the entrance and exit could have been
neglected.

=198 000 W or 198kW



Uniform Turbulent Flow in Open Channels

Steady, uniform flow in an open channel can be understood using the
Darcy-Weisbach relation.
Uniform flow in an open, rough channel can be analyzed using the energy

equation.
0= 7/‘ £ /P’ +z, —z,+h
/5(: ’Y 1 L
o\L\ Hence the head loss is simply:

/ ‘; i ' | h =z -2z, L: Length of the channel
1[ §: . = Lsing = LS S: Slope of the channel
Slope § 6 51\ :

o o - e The Darcy-Weisbach equation for this head-
Jniform flow in an open channel. .
loss is:
L V? s o _ : :
LS =foe LRS=75V R: Hydraulic radius

4R 2g e 8g



Uniform Turbulent Flow in Open Channels
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Uniform flow in an open channel.

For large open channels (having large Reynolds numbers), the friction factor is in
the turbulent region. AT

C = Chezy coefficient (dimensional n: Dimensionless constant related to the wall

constant) roughness (Manning n)
Wall material Manning n
C‘ — iR”b Planed wood 0.012
n Unplaned wood 0.013
Finished concrete 0.012
C = Channel roughneSS Unfinished concrete 0.014
. i Sewer pipe 0.013
R = Hydraulic radius Brick 0.016
Cast iron, wrought iron 0.015
C1 = 1 0 (SI) Concrete pipe 0.015
Riveted steel 0.017
Earth, straight 0.022
Corrugated metal flumes 0.025
Rubble 0.03

Earth with stones and weeds 0.035
Mountain streams 0.05




Uniform Turbulent Flow in Open Channels

Uniform flow in an open channel.

Ly
LS —fﬁz ~ RS

"~

Sy
g

- The flow-rate in an open channel is found using the Chezy-Manning equation.

0

c “1/2
_IAR2/3 Si2
n

Wall material

Planed wood

Unplaned wood
Finished concrete
Unfinished concrete
Sewer pipe

Brick

Cast iron, wrought iron
Concrete pipe

Riveted steel

Earth, straight
Corrugated metal flumes
Rubble

Earth with stones and weeds
Mountain streams

¢, = 1.0 for SI units

Manning n

0.012
0.013
0.012
0.014
0.013
0.016
0.015
0.015
0.017
0.022
0.025
0.03

0.035
0.05

Note: Equation is usually used
for rough-walled channels.



Uniform Turbulent Flow in Open Channels

The depth of water at 16°C flowing in a 3.6-m-wide rectangular, finished concrete channel
is measured to be 1.2 m. The slope is measured to be 0.0016. Estimate the flow rate using
(a) the Chezy-Manning equation and (b) the Darcy-Weisbach equation.

Solution
The hydraulic radius is calculated to be
R:i yb _ 1L2X3.6 —0.72m

P 2y+b 2%X12+36
(a) Using the Chezy-Manning equation, with # = 0.012 from Table 7.3 and ¢ =1,

we have
1
— _ARZIJSIH
¢ n
1 m"Ys 2 23 3 12 3
= X (1.2 X 3.6) m* X (0.72)"" m** X 0.0016"* = 11.57 m¥s
0.012 ERT
(b) The relative roughness is, using a low value ¢ = 0.00045 m (it is finished concrete)
shown on the Moody diagram:
e 0.00045
AR axonz 006

Assuming a completely turbulent flow, the Moody diagram gives the friction factor as
f =0.013



Uniform Turbulent Flow in Open Channels

The Darcy-Weisbach equation (7.7.3) then yields the velocity as follows:

w2
o (%J
f
- w2
_ (8 X 0.72m X 9.81mk* X 0.0016) e
0.013
The flow rate is calculated as

O0=V4=264xX12x3.6=114m's

These two values are within 2%, an acceptable engineering tolerance for this type of
problem. That found using the Moody diagram is considered to be more accurate,
however.



Uniform Turbulent Flow in Open Channels

A 1.0-m-diameter concrete pipe transports 20°C water at a depth of 0.4m. If the slope
is 0.001, find the flow rate using (a) the Chezy-Manning equation and (b) the Darcy-

Weisbach equation.
04 m
Figure EZ.20
Solution
From the sketch of the pipe in Figure E7.20 the following are calculated:
a= sin'lﬂ = 11.54°
0.5
S B =180 —2 X11.54 =156.9°
A=x X 0.5 X 1569 _ 049 % 0.1=0.2933m?
360
156.9

= X 0.5 X —— =1.369
P=2 5 360 369m



Uniform Turbulent Flow in Open Channels

The hydraulic radius is found, using the above calculations, to be

=4 _0B8 _oomom
P 1369
(a) The Chezy-Manning equation yields, with # from Table 7.3 and ¢, = 1.0 m"*/s,
Q= %AR”’S"’ = % % 0.2933 % 0.2142%% x 0.001"* = 0.22 m’ks

(b) The relative roughness is, using a relatively rough value for concrete pipe from
Figure 7.13, as suggested by Table 7.3 of ¢ = 20 mm,

8 2 _
4R 4x2142
Assuming completely turbulent flow, the Moody diagram yields

f =0.025
The Darcy-Weisbach equation (7.7.3) then gives the following:

12 }5
e (85f£$) % (8 X 0.21420>:)29§81 X 0.001) RS

0.0023

The flow rate is
Q= V4 = 0820 x 0.2933 = 0.24 m¥s

This is within 8% of the result above, an acceptable tolerance for this type of problem. The
second method, which is more difficult to apply, is considered to be more accurate, however.



Summary

Laminar entrance lengths for a pipe and wide channel are:

11—; = (.065 Re 1—’ = 0.04 Re

h

For high Reynolds-number turbulent pipe flow, the entrance length is:

I

—= =120

D

For laminar flow in a pipe and a wide channel, the pressure drop and
friction factor are:

a: Channel height

SuVL . 64 A
Ap = I'L_‘ f - )_ p]pe
y Re
12uVL . 48
Ap = 'uﬁ f = channel

a Re



Summary

The torque required to rotate an inner cylinder with the outer cylinder fixed
iS:

_ dmun’r Lo,

T

rf i ’i:

The head loss in a turbulent flow is simply:

h, :/%i— f. Found using a Moody diagram
2g

Minor losses are included using loss coefficients, K:

h, = 1\’_
2g

The flow rate in an open channel is estimated by:

0 = L ARMSM ¢, = 1.0 m"s
n



