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8.5 Potential-Flow Theory

8.5.1 Basic Flow Equations

Inviscid flows exist outside the boundary layer and the wake in high-
Reynolds number flows.

An airfoil has a thin boundary layer, hence this inviscid flow provides a good
approximation to the flow.

Flow solution is essential to predict lift/drag and possible separation points.

V = velocity field
@ = velocity potential function

V=V

This velocity field is called a potential flow (irrotational flow).
Property: Vorticity (w) is zero.

=VXV=0
Vorticity is the curl of the velocity vector. @
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8.5 Potential-Flow Theory

8.5.1 Basic Flow Equations

The vorticity equation is obtained by taking the curl of the Navier-Stokes
equation. T

— =(0-V)V+vVo
Dt
: DW o
If wis zero 2 ¢ can only be nonzero if viscous effects act through the

second term.
If viscous effects are absent (inviscid flow), the vorticity must be zero.

With the velocity given by the scalar function gradient, for an
incompressible flow:

V-Vé = V=0 E’)1(b+€)2(f)+5)zd)=0

ax*>  ay* 9z’

This is Laplace’s equation.

42



8.5 Potential-Flow Theory

8.5.1 Basic Flow Equations

Simplify by focusing on 2D flows.
Continuity equation: du . 9v

dx ay

For velocity components u, v which depend on x and y:

s W

u=— and v=-—-
ay 0x

The continuity solution is satisfied.
Hence the function y(x,y) is called a stream function.

The stream function is constant along a streamline (dy = 0).

/

43



8.5 Potential-Flow Theory

8.5.1 Basic Flow Equations

The vorticity vector for a plane flow only has a z-component (w = 0)
No variation with z. 0. = (V X V), = dv _ du

0x ay
5’ )
¢ d; 4 d; ~ 0
dx- ay-

The stream function (y) and potential function (®) satisfy Laplace’s
equation for a plane flow.

Hence, the Cauchy-Riemann equations are given as:

0D 09y 0> oY
u_ax_ayandv_ay_ 0x



8.5 Potential-Flow Theory

A scalar potential function is given by ¢ = 4 tan™' (/x). Find the stream function ¢/(x, y).

Solution
The relationship between ¢ and ¥ is given by Eq. 8.5.11. We have

%:%:i[/!tan_ll] = — Ay
X

Y= —g In(x* + 3%) + f(x)

A function of x rather than a constant must be added since partial derivatives are being
used. Now, let us differentiate this expression with respect to x. There results

ox X +y*  dx

This must equal (—dd/dy) as demanded by Eq. 8.5.11; that is,

__Ax & Ax
x2+)F dx x4+
Thus
Yo o f=c
dx

Since ¢ and ¥ are used to find the velocity components by differentiation, the constant C
is of no concern; it is usually set equal to zero. Hence

W= —g In(x* + %)
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8.5 Potential-Flow Theory

Show that the difference in the stream function between any two streamlines is equal to
the flow rate per unit depth between the two streamlines. The flow rate per unit depth is
denoted by g.

Solution
Consider the flow between two streamlines infinitesimally close, as shown in Figure E8.9a.

The flow rate per unit depth through the elemental area is, referring to Figure E8.9b,

¥
y+dy v ¥
sV
dq = dq, +dg,
dq, =udy =i ds
dq,= —vdx (dx is negative)
(a) (b)
Figure E8.9
dq = dq, + dq,
= udy — vdx
= %dy + de =dy
ay ax

If this is integrated between two streamlines with ¢ = ¢, and ¢ = ¢s,, there results
q=y, —

thereby proving the statement of the example.



8.5 Potential-Flow Theory

Show that the streamlines and equipotential lines of a plane, incompressible, potential
flow intersect one another at right angles.

Solution

If, at a point, the slope of a streamline is the negative reciprocal of the slope of an equi-
potential line, the two lines are perpendicular to each other. The slope of a streamline (see
Figure E8.10a) is given by

¥ = const

14
dy

Figure E8.10a

)| -
dx h o u

z
The slope of an equipotential line is found from

dp = %a’x + %dy =0
ax ay

since ¢ = constant along an equipotential line. This gives

_ i &

dy
dx

= comst adlay v

Hence we see that the slope of the streamline is the negative reciprocal of the slope of the

equipotential line; that is,
-1
dy _ _[dy
dx - COomst dx = Const
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8.5 Potential-Flow Theory

Thus, whenever the streamlines intersect the equipotential lines, they must do so at right
angles. A sketch of the streamlines and equipotential lines (equally spaced at large dis-
tances from the body), known as a flow net, is shown in Figure E8.10b for flow over a weir.
Such a carefully constructed sketch can be used to approximate the velocities at points
of interest in an inviscid flow. Pressures can then be estimated using Bernoulli’s equation.

13
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Figure E8.10b
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8.5 Potential-Flow Theory

8.5.2 Simple Solutions

Laplace’s equation, the continuity equation, and the velocity components in
polar form are:

, 1o a 1 & . : .
Vg = —(—(r%) + —:(‘ Hlﬁl =0 Easier to manipulate in polar
FUAL gl L G coordinates
ror r of
”_l('u,l/_(kb o afp 1dd
e = e ) = T = =
rof  or ’ ar rof
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8.5 Potential-Flow Theory

8.5.2 Simple Solutions

- There are four simple solutions to the Laplace flow.

Uniform flow : v =U,y ¢ =U,x
Line source : U= LH ¢ = I iny
27 2
. I
Irrotational vortex: ¢y = —Inr ¢ =—0
27 27
Doublet : U= (A ¢ = e
r r

The uniform flow velocity (U.,) is assumed to be in the x-direction.
Source strength (q) is the volume rate of flow per unit depth.
Positive value: issues from the source.
Negative value: creates a sink
The vortex strength (I') is the circulation about the origin (clockwise = positive).

I' = (ﬁ V-ds L: Closed curve around the origin
L
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8.5 Potential-Flow Theory

8.5.2 Simple Solutions

y @ = const
I | I |
I | I I
v O i |
: e : ¥ = const
i i i |
: [ :
I I I I
I | I |
I I I I
: ] o : ] X
1 1 L 1
1 1 I |
! R :
I I I I
I | I |
i > ] x
: : ! :
(a) Uniform flow 1n x-direction
Li . _ 4 _
) ine source: v, = — v, =0
Uniform flow: w=U, v=0 wr
v, =U,cosf v, =-U,sin@ u=J4__X v=-L ’y
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8.5 Potential-Flow Theory

8.5.2 Simple Solutions

(c) Irrotational vortex

. r
Irrotational vortex: v, =0 Uy = ——
27r
r y r X
== 22 2 T 52 2
27 x° + ) 2w x° +y

Found when water swirls down a
drain/turbine of a hydropower dam

Streamlines

/
/<
Potential
lines
(d) Doublet
cos sin @
Doublet: v, = —i v, = —£
2 0 2
2 2
xX- =y 2xy
U=—p— ,P22 Ly 2 )22
(x* +)7) (x* +%)

Doublet strength, u is for a doublet oriented in
the negative-x direction.
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8.5 Potential-Flow Theory

The pressure far from an irrotational vortex (a simplified tornado) in the atmosphere is
zero gage. If the velocity at » = 20 m is 20 m/s, estimate the velocity and the pressure at
r = 2 m. (Theirrotational vortex ceases to be a good model for a tornado when r is small.
In the “eye” of the tornado the motion is approximated by rigid-body motion.)

Solution
For an irrotational vortex, we know that

r

g = ——

2ar
Hence

r = —211'?‘0‘
= —27r X 20 X 20 = —8007 m?*/s

The velocity at # = 2 mis then

o = =800
- 2 X 2

Bernoulli’s equation for this incompressible, inviscid, steady flow gives the pressure as
follows assuming a stagnant atmosphere away from the tornado:

p/+}z>p =p+ —p

= —_pvo

= 200 m/s

=—% X 1.20 X 200* = — 24000 Pa or —24 kPa

The negative sign denotes a vacuum. It is this vacuum that causes roofs of buildings to
blow off during a tornado.
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8.5 Potential-Flow Theory

8.5.3 Superposition

- The simple flows previously presented can be superimposed (with each
other) to obtain more complicated flows.

(a) Potential flow (b) Actual flow

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a
publicly accessible website, in whole or in part.
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8.5 Potential-Flow Theory

8.5.3 Superposition

E.g., Flow around a circular cylinder with and without circulation.

Superimpose a uniform flow and a doublet.

b= Uy — i sin @
-
The velocity component, v, is:
o 1 o
i

U, cosf — i cos #
72

At the radius, r.=> v, is zero.

Zero for all 8 = hence the circle r = r, is a streamline.

s
L."

e ——

/
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8.5 Potential-Flow Theory

8.5.3 Superposition

The stagnation points are where vg= 0 on the circle r =r,

A

ar

(a) Potential flow

Uy =

= —U,sinf — “Sl,no =—2U,sinf =0

e

The stagnation points are at 8 = 0° and 6 = 180°.

To find the pressure distribution, use Bernoulli's equation between
stagnation point (V = 0; p = py) and an arbitrary point.
_ =l
p(' 10 p 2

= p, — 2pU?Z sin’f

56



P

8.5 Potential-Flow Theory

8.5.3 Superposition

- E.qg., Flow around a rotating cylinder.
Add an irrotational vortex to the superimposed uniform flow and doublet.
b=U.y— psinf N I'
r 27T

Inr

- The vortex flow (consisting of circular streamlines) does not change v, 2
the cylinder r = r_ is unchanged.

- Stagnation points change. y

j

(a) ' <4zxUgr, (b) ' > 4nUr,
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a
publicly accessible website, in whole or in part.



8.5 Potential-Flow Theory

8.5.3 Superposition

- The stagnation points are:

o= -
ar
= —2U, sinf — L =0
2.
1 For (a), the stagnation points are on the
cylinder where r =r..

T“’ ) For (b), the circulation is large so that a
single stagnation point (6 = 270°) is
formed off the cylinder.

(a) ' <4zU,r, (b) T >4nU.r,
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8.5 Potential-Flow Theory

8.5.3 Superposition

- From Bernoulli’'s equation, the pressure distribution is:

2

2
U : r
=p, — p—| 2sinf +
Pe =P =P 2( ¥ 277ch°°)

- After integration, drag = 0 and the lift
per unit length is:

2x
F=-| p.sinfr.do
= pU_I

- Good approximation to the lift for all
cylinders (and airfoils).

(@) T < 4zU.r. (b) T > 4zU..7, «  KUTTA-JOUKOWSKY THEOREM!
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8.5 Potential-Flow Theory

An 200-mm-diameter cylinder rotates clockwise at 1000 rpm in a 1 5°C-atmospheric airstream
flowing at 4.5 m/s. Locate any stagnation points and find the minimum pressure on the cylinder.

Solution
The circulation is calculated (see Eq. 8.5.19) to be

r= {)LV-ds

= 2w = 2 X (0.1 X % = 6.57 m%s

This is greater than 4awrU,r, = 4 X 4.5 X 0.1 = 5.65 m*/s; hence the stagnation point is
off the cylinder (see Figure 8.20b) at @ = 270° at a radius of

r 6.57

— = =0.116m
47U, sin270° 4w X 4.5 X (—1)

n =

Only one stagnation point exists.
The minimum pressure is located on the top of the cylinder where # = 90°. Using
Bernoulli’s equation from the free stream to that point, we have, letting p, = 0,
0
2

U,
S

2
S Pmin = %[Ui —(vp)hax] = %[Ui - [—20,, sin 90° — I J }

27rr,

6.57
2w X 0.1

3
= M[“z = (2 X 4.5+

2
= ) ] m’/s* = —215.1 Pa
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8.7 Summary

Drag Lift
1 B CL = 1 )
7pV°A 7pV°A

Drag and Lift coefficients are: ¢, =

Vortex shedding occurs from a cylinder when 300 < Re < 10,000

The frequency of shedding is found from the Strouhal number.  St= g

Plane potential flows can be found by superimposing simple flows below.

Uniform flow: v =U,y éd=U,x
Line source: U= | b= L inr
2 2
. r r
Irrotational vortex: ¥ = —Inr ¢ = —=~0
2 2
Doublet : U= —E ing & = —E cosh
r r

: : : : , , r
The stream function for a rotating cylinder is: ¢y = U.y - %smﬂ +— Inr

LT
With the cylinder radius: "
,:_ = —_—

U
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8.7 Summary

The velocity components are:

ol ol

U = — V= ——
dy ox
1 o ol
I T —— U — — —
r of ar

For a laminar boundary layer on a flat plate (zero pressure gradient), the
exact solution is:

For a turbulent flow, the power-law profile (n = 7):
5= 0.38_\-[ \_Z, ) ¢ = 0.059("'6’3 )”5 C, = 0.073[ LZ, )

The wall shear and drag force per unit width are:

1 .
Ty = ;ijb; F, =

C,pUZL

09|
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