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Chapter 3

Boundary layer



8.1 Introduction

An understanding of external flows is important for aerospace engineers:
To understand airflows around different components of an aircraft.

Also for flow of fluids around turbines, buildings, automobiles, etc.

Need to concentrate on high-Reynolds-number flows (Re > 1000).
Incompressible immersed flows (automobiles, low-speed aircraft, turbines)

Flows of liquids with a free surface (ship or bridge abutments)
Compressible flows with high-speed objects

Flow is influenced by the presence of a boundary or another object.



8.1 Introduction

. High-Reynolds-number incompressible immersed

flows can be either:
Flows around blunt bodies.

Flows around streamlined bodies.

Ibl = Laminar boandary layer
thi = Turbulent boundary layer

Figure 8.1 Flow past a circular cylinder at Re = 0.16. The flow is from left to right.
It resembles superficially the pattern of potential flow. The flow of water is shown by
aluminum dust. (Photograph by Sadatoshi Taneda. From Album of Fluid Motion, 1982,

The Parabolic Press, Stanford, California.)

(b)

Figure 8.3 Flow around a blunt body and a streamlined body.
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8.1 Introduction

Boundary layer near a stagnation point is a laminar boundary layer.

For a high enough Reynolds number, there is a laminar-turbulent

transition downstream:
Flow may separate from the body, forming a separated region [region of
recirculating flow].
The wake is a region of velocity defect that grows because of diffusion.

These boundaries are time-dependent.

Ibl = Laminar boundary layer
tbl = Turbulent boundary layer

Inviscid
flow

- Stagnation | Se=— -~
v point Separated s \
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8.1 Introduction

Stagnation
point

(b)

For the figure above, the drag and the lift is found as below:
Drag: Force the flow exerts on a body in the direction of the flow.
Lift: Force the flow exerts normal to the direction of flow.

Fp K
] = 1

Cp =

The lift and drag coefficients are seen above, with A as the projected
area.
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8.2 Separation

Separation

Boundary 8
s point

layer

Chord: Line connecting the
trailing edge with the nose
Angle of attack: Angle the flow
makes with the chord

L T
-~

_.Inviscid

Angleof ____&~<

attack ¥

(a)

Figure 8.4 Streamlined body that is stalled.

A separated flow occurs when the main stream flow leaves the body.

When separation occurs with a high angle of attack near the forward
portion of the airfoil, the flow is “stalled.”

Stall is undesirable in aircrafts while cruising, but provides high drag when
landing.
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8.2 Separation
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Figure 8.5 Separation due to abrupt geometry changes.

Figure 8.6 Flow separation on a flat surface due to an adverse pressure gradient.

. If a body has an abrupt change in profile, separation occurs near this
change.
. It will also occur upstream of the flat surface, and will reattach at some

point downstream.
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8.2 Separation

Edge of

huundu{'y layer Separation
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Figure 8.6 Flow separation on a flat surface due to an adverse pressure gradient.
The y-coordinate is normal to the wall. The x-coordinate is measured along the wall.

Downstream of the separation point, the x-component velocity near the wall is in the

negative x-direction. Upstream of the separation point, the x-component of the velocity is in
the positive x-direction.

Separation point is at the point where (du/dy), ., = 0

wall
Separation occurs when the flow approaches a stagnation region:
Velocity is low and pressure is high (positive pressure gradient).

As separation is undesirable, a positive pressure gradient is an adverse pressure
gradient. A negative gradient is a favorable pressure gradient.



8.2 Separation

Edge of
boundary layer Separation

y X _____ streamline

. Separation is influenced by: .
G eometry Seijguon .
PreSSU re gradient Figure 8.6 Flow separation on a flat surface due to an adverse pressure gradient.
Reynolds number

Wall roughness
Free-stream fluctuation intensity (intensity of the disturbances that exist away from
the boundary)

Wall temperature

wall

. The last three have less but sometimes significant influences.



8.3 Flow around Immersed Bodies

8.3.1 Drag Coefficients
The primary flow parameter that influences flow is the Reynolds number.

Neglecting gravity, thermal, and surface tension effects.

For a sphere, at Re < 1, there is creeping flow with no separation.
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8.3 Flow around Immersed Bodies

8.3.1 Drag Coefficients
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Drag coefficients for flow around a long cylinder and a sphere
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8.3 Flow around Immersed Bodies

8.3.1 Drag Coefficients

Table 8.1 Drag Coefficients of Finite-Length Circular Cylinders* with Free Ends® and of
Infinite-Length Elliptic Cylinders

Circular cylinder Elliptic cylinder*
l.,engfh Cp zW(.zjor a.'w:s Re C
Diameter Coo Minor axis
o0 1 2 4 x 10* 0.6
40 0.82 4 10° 0.46
20 0.76 - 2.5 %X 10% to 10° 0.32
10 0.68 8 2.5 x 10° 0.29
5 0.62 8 2 %X 10° 0.20
3 0.62
2 0.57
1 0.53

*C,. is the drag coeflicient for the infinite-length circular cylinder obtained in Figure 8.9.
*If one end is fixed to a solid surface, double the length of the cylinder.
¢Flow is in the direction of the major axis.

12



8.3 Flow around Immersed Bodies

8.3.1 Drag Coefficients
Object

. L.,
Square cylinder —J"
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8.3 Flow around Immersed Bodies

8.3.1 Drag Coefficients (contd)

Object Re c,
B 30° > 10° 0.6
Cone — -} a =1 60° = 104 0.8
o 90° = 10* 1.2
: : —=D > 10* 1.2
Solid hemisphere _, 1 - 10 0.4
. - = 10* 1.4
Hollow hemisphere = - 10* 0.4
Parachute = 107 1.4
Automobile
1920 o = 10° 0.80
Modern, with square corners — = 10° 0.30
Modern, with rounded corners — = 10° 0.29
Van = 10° 042
Bicycle, upright rider 1.1
racing, bent over 0.9
racing, drafting 0.5
Semitruck, standard 0.96
with streamlined deflector 0.76
with deflector and gap seal 0.70

Drag Coefficients for various blunt objects



8.3 Flow around Immersed Bodies

A square sign, 3 m X 3 m, is attached to the top of a 18-m-high pole which is 30 cm in
diameter (Figure ES8.1). Approximate the maximum moment that must be resisted by the

base for a wind speed of 30 m/s.
3m
| —
! ] 3m
=L

18 m

30 cm —{[=—

Figure E8.1

Solution
The maximum force F| acting on the sign occurs when the wind is normal to the sign; it is

F|=CDX%pV2A

=1.1><%x1.2x302 X 32 =5346 N

15
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8.3 Flow around Immersed Bodies

where C,, is found in Table 8.2 and we use the standard value p = 1.2 kg/m® since it was

not given. The force F, acting on the cylindrical pole is (using the projected area as
A=18 X0.3m?

F;=CDX%pV2A

=08 X % X 1.2 X30% X5.4=23328N

where C}, is found from Figure 8.9 with Re = 30 X 0.3/1.46 X 10~° = 6.2 X 10° assuming
a high-intensity fluctuation level (i.e., a rough cylinder): since neither end is free, we do
not use the multiplication factor of Table 8.1.

The resisting moment that must be supplied by the supporting base is

M = d4,F, + d,F,
=19.5X 5346 +9 X 23328 =125kN-m

assuming that the forces act at the centers of their respective areas.

16



8.3 Flow around Immersed Bodies

Determine the terminal velocity of a 300-mm-diameter smooth sphere (S = 1.02) if it is
released from rest in (a) air at 20°C and (b) water at 20°C.

Solution
(a) When terminal velocity is reached by a falling object, the weight of the object is bal-
anced by the drag force acting on the object. Using ZF = 0 and Eq. 8.1.1, we have

W =F,

G ey S %ﬂR’ = Cp X %pVZA

USINg Yypere = S¥waer and projected area 4 = wR?, this becomes
1

SYarer X %‘n’R’ = Cp X E-sz‘trR2

The velocity can now be expressed as

s [SRS-ym,,]“z _ (8x0.15m X 1.02 X 9800 Nim* }'* _ 57.7
3pC, 3% 1.20kg/m* X Cp :;CD

The Reynolds number should be quite large so C, = 0.2 from Figure 8.9. Then

57.7
V = =129 m/s
\—/0.2 -

17
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8.3 Flow around Immersed Bodies

We must check the Reynolds number to verify the C,, value assumed. It is

VD 129X 0.3

v T 16x10= =2.42 X 10¢

Re =

This is beyond the end of the curve where data are unavailable; we will assume that the
drag coefficient is unchanged at 0.2, so the terminal velocity is 129 m/s.

(b) For the sphere falling in water, we must include the buoyancy force B acting in the same
direction as the drag force F},. Hence the summation of forces yields

W =F,+B

7 ey 2 %wR3 = Cp X %pVZA + YVoare X %WR3

18



8.3 Flow around Immersed Bodies

This gives

(S — Dy X %wR’ =, x %pV%rRz

Using p = 1000 kg/m’, there results

v — [BRE = e " (8x0.15 % 0.02 x9800)” _ 0.28
3pC, 3 X 1000 X C, JCo

We anticipate the Reynolds number being lower than in part (a), so let’s assume that it is
in the range 2 X 10* < Re < 2 X 10°. Then C,, = 0.5 and there results

V = 0.40 m/s
This gives a Reynolds number of
Re — VD _ 040 X03 _ 12 % 10°
v 106

This is in the required range, so the terminal velocity is expected to be 0.40 m/s. Of course,
if the sphere were roughened (sand glued to the surface), the C,, value would be less and
the velocity would be greater.

19
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8.3 Flow around Immersed Bodies
8.3.2 Vortex Shedding

When long, blunt objects (such as circular cylinders) are placed normal to a
fluid flow:
Vortices/eddies are shed regularly and alternately from opposite sides.

The flow downstream is called a Karman vortex street. (40 < Re < 10000,
with turbulence above Re = 300)

Vortex
being shed

Shed

20
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8.3 Flow around Immersed Bodies

8.3.2 Vortex Shedding

Dimensional analysis is applied to find this shedding frequency.

For high Re (negligible viscous effects), shedding frequency depends on
velocity and diameter f= f(V, D).

This is the dimensionless Strouhal number.

The Strouhal number is constant (0.21) over 300 < Re < 10000.
Frequency is directly proportional to the velocity over a large Re range.

21



8.3 Flow around Immersed Bodies

8.3.2 Vortex Shedding

T I T I |
K
Sl —T—=

0.20 \
Data spread
~ . 018
= | >

St=

0.16 //
0.14
/ | | | | |

10000

Vortex shedding is considered when designing towers/bridges.
When a vortex is shed, a small force is applied to the structure.
If the shedding frequency is close to the natural frequency - Resonance

22



8.3 Flow around Immersed Bodies

The velocity of a slow-moving, 30°C air stream is to be measured using a cylinder and a
pressure tap located between points 4 and B on the cylinder in Figure 8.10a. The velocity
range is expected to be 0.1 < V < 1 m/s. What size cylinder should be selected and what
frequency would be observed by the pressure-measuring device for V' = 1 m/s?

Solution

The Reynolds number should be in the vortex shedding range, say 4000. For the maximum
velocity the diameter would be found as follows:

4&)0:@.
Vv

_ 1.0m/s X D
T 1.6 X 1075 m?%/s
- D=0064m Select D =60 mm

AtV = 0.1 m/s the Reynolds number is 0.1 X 0.06/1.6 X 10~° = 375. Vortex shedding
would occur, so this is acceptable. The expected vortex shedding frequency at}V = 1.0 m/s
is found using a Strouhal number from Figure 8.10b of 0.21. Hence

_ /D
021= =
_ £ %006
1.0
~ f = 3.5 hertz

23



/\ —

8.3 Flow around Immersed Bodies

8.3.3 Streamlining

If a flow must remain attached to the surface of a blunt object (cylinder/
sphere):
It must move into areas of higher pressure as it goes into the rear stagnation
point.
At high Reynolds numbers (Re > 10), the slow-moving boundary layer flow
cannot make it to the high-pressure area near the rear stagnation point
(separation occurs).
Streamlining: Reduces the high pressure at the rear of the object so the slow-moving
surface flow can move rearward (into a slightly high-pressure region).
Separation region will be reduced to a small percentage of the initial separated region on

the blunt object.
For effective streamlining trailing edge angle < 20 degrees.

24
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8.3 Flow around Immersed Bodies
8.3.3 Streamlining

For a streamlined body:
Surface area is greatly increased.

Reduces most of the pressure drag, but increases the shear drag on the
surface.

Usually eliminates periodic shedding of vortices.

The streamlined body cannot be so long that the shear drag is larger than
the pressure drag plus shear drag for a short body.

Needs to be optimized.

25



8.3 Flow around Immersed Bodies

A strut on a stunt plane traveling at 60 m/s is 40 mm in diameter and 240 mm long. Cal-
culate the drag force acting on the strut as a circular cylinder, and as a streamlined strut,
as shown in Figure E8.4. Neglect any viscous drag. Would you expect vortex shedding

from the circular cylinder?

Figure E8.4{a) Figure E8.4(b)

Solution
The Reynolds number associated with the cylinder and the streamlined strut is, assuming
airat T = 20°C,

Re = —
v

60 X 0.04

—W=I.6X105

26



8.3 Flow around Immersed Bodies

Assuming a smooth surface as in Figure E8.4a, the drag coefficient is C, = 1.2 from
Figure 8.9. The drag force is then

E, =C, X %pVZA

=12X % X 1.20 kg/m® X 60* m*/s* X (0.24 X 0.04)m* =249 N

For the streamlined strut of Figure E8.4b, Figure 8.9 yields C,, = 0.04. The drag
force is
1
F,=C, X EpVZA

=0.04 X % X 1.20 X 60* X (0.24 X 0.04) = 0.82 N

This is a reduction of 97% in the drag, a rather substantial reduction.
Vortex shedding is not to be expected on the circular cylinder; the Reynolds number
is too high. (See Figure 8.10.)

27
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8.3 Flow around Immersed Bodies

8.3.4 Cavitation

- This is the rapid change of phase from liquid to vapor that occurs when the
local pressure is equal to or less than the vapor pressure.

28



8.3 Flow around Immersed Bodies

8.3.4 Cavitation

There are four types of cavitation:

Traveling cavitation: Exists when vapor bubbles/cavities are formed, are
swept downstream, and then collapse.
Fixed cavitation: Exists when a fixed cavity of vapor exists as a separated
region.
Vortex cavitation: Found in the high-velocity (low pressure) core of a vortex
(e.q., tip vortex leaving a propeller).
Vibratory cavitation: Exists when a pressure wave moves in a liquid (pressure
pulse of high pressure followed by a low pressure).

The low-pressure part of the wave causes cavitation.

The first type of cavitation causes a lot of damage.

Instantaneous pressures caused from the collapse are very high (~1400
MPa).

29



8.3 Flow around Immersed Bodies

8.3.4 Cavitation

Cavitation occurs when the cavitation number (o) is less than the critical
cavitation number (O ;)
Depends on the body geometry and Reynolds number.

P = Po p... Absolute pressure of the free stream
0= p,: Vapor pressure
el

As o keeps decreasing, the cavitation increases in intensity (moving from
traveling cavitation to fixed cavitation to supercavitation).

30
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8.3 Flow around Immersed Bodies
8.3.4 Cavitation , _ 7= —12?0
27

- The drag coefficient for small numbers is: Cp(o) = Cp(0)(1 + o)

Table 8.3 Drag Coefticients for Zero Cavitation Number for Blunt Objects for Re = 10°

Two-dimensional body Axisymmerric body
Geometry 0 Cp(0)  Geometry 0 Cp(0)
Flat plate ___/|"—-~ 0.88  Disk 0.8
—J__
Circular cylinder 0.50  Sphere 0.30
120 0.74  Cone 120 0.64
Wedge I 92 0.64 _— 20 0.52
— <3 60 049 — <3 60 0.38
o~ 30 028 = T 30 0.20

31
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8.3 Flow around Immersed Bodies
8.3.4 Cavitation

- The hydrofoil (airfoil-type body) is a shape that is associated with cavitation.
Used to lift bodies out of water.

Table 8.4 Drag and Lift Coefficients and Critical Cavitation Number
for a Typical Hydrofoil

Critical cavitation

Angle Lift coefficient Drag coefficient number
() Cy Cp T et
-2 0.2 0.014 0.5

0 0.4 0.014 0.6
2 0.6 0.015 0.7
B 0.8 0.018 0.8
6 0.95 0.022 1.2
8 1.10 0.03 1.8
10 1.22 0.04 2.5




8.3 Flow around Immersed Bodies

A hydrofoil is to operate 50 cm below the surface of 15°C water at an angle of attack of
8 and travel at 14 m/s. If its chord length is 60 cm and it is 1.8 m long, calculate its lift
and drag. Is cavitation present?

Solution
The absolute pressure p_ is

p. = ‘)’h +p.m
=9810 X 0.5 + 1.01 X 10° = 105.9 kPa absolute

The vapor pressure is p, = 1.765 kPa, so

e
212
5P

(1059 — 1.765) X 107 _

%xlOOOxM2

1.06

Answering the last question first, we see that this is less than 1.8; hence cavitation exists.
The lift force is, finding C; in Table 8.4,

F,=C, x %pV’A

=11Xx % X 1000 kg/m® X 14* m*/s* X (0.6 X 1.8) m* = 116.4 kN

The drag force is, finding Cp, in Table 8.4,

F, =Cp X %pV’A

=0.03 X 1 % 1000 % 14*(0.6 X 1.8) = 3180 N

2
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8.3 Flow around Immersed Bodies

8.3.5 Added Mass

If a body accelerates in a fluid, some of the fluid surrounding the body also
accelerates.

This can be accounted for by adding a small mass m,, to the mass of the
body.

Hence, summing forces for a symmetrical body:

1V
F—F,=(m +m‘,)dIB

at

The added mass can be related to the fluid mass (my) by:

k: Added mass coefficient
Sphere k = 0.5

Ellipsoid k = 0.2

Long cylinder k = 1.0

m, = km;

34
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8.3 Flow around Immersed Bodies

A sphere with specific gravity 2.5 is released from rest in water. Calculate its initial accel-
eration. What is the percentage error if the added mass is ignored?

Solution
The summation of forces in the vertical direction, with zero drag, is

W —-B=(m+ m,)dVB
dt

where B is the buoyant force. Substituting in the appropriate quantities gives, letting
¥ = sphere volume,

S7muxV - 'Ywam-y = (pnwrSV + OspiamV )d;;B
This gives
dV,
S—-1)=(S +0.5)—=
g(S-1)=( ) 7
Hence
dVy _gsS-D _ 9.8(25—-1) — 4.90 m/s?
dt S+0.5 25+05 -
If we ignored the added mass, the acceleration would be
dVy g(S—-1) _9825-1) _ -
= 3 5 5.88 m/s
This is an error of 20%.
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8.4 Lift and Drag on Airfoils

. An airfoil is a streamlined body that reduces adverse pressure gradient.
Hence separation doesn’t occur (at small angles of attack).

Drag is mainly due to wall shear stress (viscous effects in the boundary
layer).

v a = angle of attack
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8.4 Lift and Drag on Airfoils

For this thin boundary layer, lift can be approximated by integrating the
pressure distribution.

Drag is found by solving the boundary layer equations (Navier-Stokes
equations) for shear stress:

Then integrate.

Vv

37



8.4 Lift and Drag on Airfoils

1.4 =

1.2 -

Specially designed
airfoil

08 -

0.6 —

04l @

02—

- 8 12 16 20 0.004 0.008 0.012 0.016

Figure 8.13 Lift and drag coefficients for airfoils with Re = Ve/v = 9 X 10° (¢ is the chord length).

38



P

8.4 Lift and Drag on Airfoils

. Maximum lift coefficients can be around 1.5
. Minimum drag coefficients for some particular airfoils can be as low as 0.0035
. The cruise condition (design lift coefficient) is around 0.3, which is near the

minimum drag coefficient condition.
Around an angle of attack of 2° (maximum stall condition of 16°)

. Conventional airfoils aren’t symmetric.
Will have a positive lift coefficient at zero angle of attack.

. Lift is proportional to AOA, but deviates from a linear function just before stall.
. Drag is proportional to AOA (upto 5°), then changes in a nonlinear relation.

39



unswept airfoil.
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8.4 Lift and Drag on Airfoils

The total lift on an aircraft is supplied primarily by the airfoil.

/7

The effective length of the airfoil in this calculation is taken from the tip-to-tip

— 7\,,
/
distance.
This is the wingspan.
0.08
\\
\\;
Co
Re > 10* 4
0.006 >//
1 I |
( 1.0
M
Figure 8.15 Drag coefficient as a function of Mach number (speed) for a typical

The drag coefficient is constant until around M =

0.75

Then there is an increase until the Mach number

reaches unity.
After this, the drag coefficient drops.

Hence, to avoid high drag coefficients M = 1 should

be avoided.

At M =1, there are regions of flow that
oscillate from subsonic to supersonic. These

forces need to be avoided.
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8.6 Boundary-Layer Theory

8.6.1 General Background

For high Re flows:

/

e ——

Viscous effects are confined to the thin layer of fluid (boundary layer) next to
the body and to the wake downstream of the body.

The edge of the boundary layer is arbitrarily defined as:
The locus of points where the velocity equals 99% of the free-stream velocity.

y

Edge of
boundary layer
\
o(x) '.
\ -

Inviscid flow
— velocity distribution

Boundary layer
velocity distribution

Figure 8.21 Boundary layer on a curved surface.

| e —
U(x) TT—

For a thin boundary
layer, the pressure in
the boundary layer is
the pressure at the wall
[inviscid flow solution].
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8.6 Boundary-Layer Theory

8.6.1 General Background

Burst rate

First burst becomes Burs
Smal] 1S observed constant —
U by \ ' trajectory
‘oo disturbances | | |
grow | f Time-average boundary-
Laminar | | layer thickness
flow 5(x) Transition 4‘ =]
\ region e T —
L e -—1———— A= -1 Turbulent flow / = —
T T )
| | | .f ;
I v | Fluctuating viscous Burst
T g
wall layer

Figure 8.22 Boundary layer with transition.

The boundary layer begins as a laminar flow (with zero thickness) at the
leading edge of a flat plate.

After a distance xy, laminar-to-turbulent transition. x; depends on:
Free-stream velocity
Viscosity
Pressure gradient
Wall roughness
Free-stream fluctuation level
Wall rigidity
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8.6 Boundary-Layer Theory

8.6.1 General Background

Burst rate
First burst becomes

; Burst
is observed constant
" ~ Small ~ ) trajectory
‘oo disturbances | |
grow |l f Time-average boundary-
Laminar | [ layer thickness
flow 8(x) Transition J'
L region | . ——— n s e e i =
_____ oy - Turbulent flow ./é:
- . S ==
| | {
I = I Fluctuating viscous Burst
wall layer

Figure 8.22 Boundary layer with transition.

For a flat plate with zero pressure gradient, the transition occurs:

Flow on rough plates or with high free-stream fluctuation intensity >

U.x/v=3X10°

Flow on smooth rigid plates with low free-stream fluctuation intensity 2>

U.x/v=5X10°

The quantity [Ux/v] is the local Reynolds number.
Hence U_x;/v is the critical Reynolds number.
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8.6 Boundary-Layer Theory

8.6.1 General Background

Burst rate

First burst becomes

Small is observed constant l.iursl
U — \ ' trajectory
‘o0 disturbances | | |

grow \ [ Time-average boundary-

Laminar | [ layer thickness
flow 5(x) Transition ;’ =
\ region e e e e e i e e = TR =
______ ;__ - _L — e e [ e e e Turbulent flow Q/é’: —
— . e 2=
| | | !
I = | Fluctuating viscous Burst

wall layer
Figure 8.22 Boundary layer with transition.

Assume flow is laminar up to x; and turbulent afterwards.

The turbulent boundary layer thickens much more rapidly than the laminar layer.

Has greater wall shear and a greater slope at the wall.
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8.6 Boundary-Layer Theory

8.6.2 Von Karman Integral Equation

-

1.0 m/s
Laminar 5(x) Turbulent ! l

YYYY

|
10m
Figure 8.24 Boundary layer in air with Re_, = 3 X 10° (approximately to scale).
As seen from the velocity profile:

Velocity goes from u = 0.99U_, aty =0 to u =0 at y = 0 over a small distance
(boundary layer thickness).

Hence the velocity profile for laminar and turbulent flow can be predicted well.
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8.6 Boundary-Layer Theory

8.6.2 Von Karman Integral Equation

Utx) 7“']— - 'j'l-m — . . . .
Jes - L - For an infinitesimal control volume,
5. s e [ <o the integral continuity equation is:
o — o My, = Mgy — 1y,
|‘—|.1I—’| (b) Mass flux ') s
(a) Control volume = 4(— pu (1')' (1..\'
dx Jo
(3 )i e + The integral momentum equation
G | mommmimg s S then becomes:

&
Pé ——— momy= | puldy
‘o

§ 3 5

=| purdy+ I" puz dy dx
X -
‘0 Io

— - S F = mo L
F, = mom,, —mom,, —mom,,,

Tpdr (d) Momentum flux
(c) Forces

Figure 8.25 Control volume for a boundary layer with variable U{(x).

+  Hence, from momentum flux, the von Karman integral equation is:

dp d r dr ,,
+ 6— = U(x)— dy — — “dy
Tot oo S U | pudy — o] puad)
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8.6 Boundary-Layer Theory

8.6.2 Von Karman Integral Equation

+  For flow over a flat plate with zero
pes | " pressure gradient, the simplified
5 5+db e = equation iS:

My = -A‘Pl‘ dy & 5 &
‘o =| pudy+ — | pudydx
- - Jo ox Jg d ] d 8
— . 70 =— | puU,dy — — | pudy
(b) Mass flux dx 0 : dx 0

|-—.1r——|

(a) Control volume d &
= —J pu(U.,— u)dy
dx Jo

(p+ i‘ )46 — Moo = Myop U(X)

|
. . dmomy,
) G MOMyg = MOMyy + drx
o6 ——— (p+dp) (6 +d5) mom = 'puli_\' . ! ) dx )
— N <[ et e | ety Constant
‘0 o
;:.—slf (d) Momentum flux denSIty

(c) Forces

Figure 8.25 Control volume for a boundary layer with variable U{(x).
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8.6 Boundary-Layer Theory

8.6.2 Von Karman Integral Equation

Displacement thickness &, The displacement of the streamlines in the free
stream as a result of velocity deficits in the boundary layer.

Momentum thickness 0: The equivalent thickness of a fluid layer (velocity
U) with momentum equal to the momentum lost from friction.
Used as a characteristic length in turbulent boundary-layer analysis.

l .5

- U —u)dy

L,f v ( ) .

l -5

0 =— | wlU —u)dy
L"' T J0
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8.6 Boundary-Layer Theory

8.6.3 Approximate Solution to the Laminar Boundary Layer

The von Karman integral equation can be used to obtain an approximation to
the laminar boundary layer on a flat plate with zero pressure gradient.

Propose a velocity profile with the below conditions.
From the velocity profile sketch and the x-component of the Navier-Stokes

equation.
u= at y=20
u=U, at y=26
du : .
— = at y=48  The velocity profile
oy for a laminar flow is u _3y .1
0 u then: T U, 28 2
(—: =0 at y=0 ’

-

2
&

)g
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8.6 Boundary-Layer Theory

8.6.3 Approximate Solution to the Laminar Boundary Layer

: . : 3y , 1(yY
From the velocity profile in a laminar flow: L—' = ;% ‘ ;(%]

O(x) and T1y(x) are found to be as follows from von Karman's integral
equation:
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8.6 Boundary-Layer Theory

8.6.3 Approximate Solution to the Laminar Boundary Layer

Using the cubic velocity profile and the shearing stress, the local skin
friction coefficient c; can be defined:
This is a dimensionless wall shearing stress.

To

TPU--.2 Re_: Reynolds number

at the end of the flat

0.646 0.646

plate

JU, xIv Re, Re = J=*

By integrating the wall shear over length L, the skin friction coefficient C;
(dimensionless drag force): F
C D

" LpUIL
_ 129 1.29
JU.LIv  JRe;

v
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8.6 Boundary-Layer Theory

Assume that the velocity profile in a boundary-layer flow can be approximated by a para-
bolic velocity profile. Calculate the boundary-layer thickness and the wall shear. Compare
with those calculated above for the cubic profile.

Solution
The parabolic velocity profile is assumed to be

— =A+By+ 0

U.
The fourth condition, which would be impossible to satisfy, of (8.6.9) is omitted; this
leaves
0=A4
1=A+ Bé+C#*
0=B+2C8

A simultaneous solution provides
A=0 B= = C=-
é

The velocity profile is then

~

I

o
> |

|
& =
2
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— This is substituted into von Karmén’s integral equation (8.6.5) to obtain
2

s ; 2
T, = ol pr,[ZX J J[l _ % + "—)dy

dx Jo 5 & 5 &
2 . dé

=22
5P 2x

We also use 7, = p duldy |,-o: that is,

(8]

To =”'Um

Equating the two expressions above, we obtain

|

8dd = 15-—dx
U.

Using 8 = 0 at x = 0, this is integrated to

5 =5.48 f"—x
U.

This is 18% higher than the value using the cubic but only 10% higher than the more
accurate result of 5 \/vx/ U,.
The wall shear is found to be

2ul,

oy = T
= 0.365pU2  [——
xU,

This is 13% higher than the value using the cubic and 10% higher than the more
accurate value of 0.332 prJV/xU.,. Because the boundary layer is so thin, there
is little difference between a cubic and a parabola or the actual profile; refer to the
profile in Figure 8.24.

73



8.6 Boundary-Layer Theory

8.6.4 Turbulent Boundary Layer: Power-Law Form

One of two methods used for turbulent boundary-layer flow involves fitting
the data for the velocity profile using a power-law equation.

_ " 7 Re, < 10’
Zf = (l) n=148 10" < Re, < 10°
U, 0

{ 9 10° < Re, < 107

Following the previous methodology (von Karman), the local skin friction
coefficients and the shear stress relations can be found.
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8.6 Boundary-Layer Theory

8.6.4 Turbulent Boundary Layer: Power-Law Form

Two forms of shear stress relationships:

d L -\
, N\ /4 TU T — PL"E(f) |:1 _ (’T) }(1}
— oo a2l Y dx o o
7 = 002302 575 b |

The local skin friction coefficient can be related to the boundary-layer
thickness and local Reynolds numbers as:

N\ /4

¢ = 0046[(‘—8]

) 5= 0.3&\-[ d ]
U.x,
¢, = 0.059Re’’ Re, < 107 = 0.38xRe " Re, < 10

Assuming turbulent flow
from the leading edge
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8.6 Boundary-Layer Theory

8.6.4 Turbulent Boundary Layer: Power-Law Form

The skin friction coefficient can then be found as:

C, = 0.073Re; " Re, < 107
» |If Lis around 3x; or less, then

s 1 . there is a significant laminar
C; =0.073Rez™ — 1700 Re; Re, <10 section on the leading edge.

Equation is modified as such
» Used for a Re,; =5 X 10°

Finally, the displacement and momentum thicknesses can be found as:

5, = 0.048xRe:"
9 = 0.037xRe;"
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8.6 Boundary-Layer Theory

Estimate the boundary-layer thickness at the end of a 4-m-long flat surface if the free-
stream velocity is U, = 5 m/s. Use atmospheric air at 30°C. Also, predict the drag force if
the surface is 5 m wide. (a) Neglect the laminar portion of the flow and (b) account for
the laminar portion using Re,, = 5 X 10°.

———
o
e
-
e ———

X7

Xturb I

Figure E8.14

Solution
(a) Let us first assume turbulent flow from the leading edge. The boundary-layer thickness

is given by Eq. 8.6.27. It is
8 = 0.38x Re7"

-Us
=038 X 4 X (i) =0.0917 m
1.6 X 1075 ——

The drag force is, using Eq. 8.6.29,

F,=C X %pU,fLw

5x4 Y"1 Oy
=0073W XEX116kym X5 m’/s® X4m X Sm =128 N
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8.6 Boundary-Layer Theory

The predictions above assume that Re, < 10”. The Reynolds number is

__5x4
1.6 X 10~

Hence the calculations are acceptable.

=1.25 X 10¢

Cr

(b) Now let us account for the laminar portion of the boundary layer. Referring to Fig-
ure ES8. 14, the distance x; is found as follows:

UmxT
|4
1073

Re, =5 X 105 =

SXp=5X10° X 1.6 X =1.6m

The boundary-layer thickness at x; is, replacing the constant of 4.65 in Eq. 8.6.16 with
the more accurate value of 5,

5=5’ﬂ
U

_ 5 [L6m X 1.6 X 10~ ms
Sm/s

=0.0113m

The location of the fictitious origin of the turbulent flow (see Figure E8.14) is found using
Eq. 8.6.27 to be
x,us _ 5 (&)I/S
0.38\ v

sis V4
SX = [0'0113) ( > ) =0292m

0.38 1.6 X 10~°
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8.6 Boundary-Layer Theory

The distance x,, is then x,,, = 4 — 1.6 + 0.292 = 2.69 m. Using Eq. 8.6.27, the thickness
at the end of the surface is

N
é = 0.38x (—)
U.x

0.067 m

-5 s
= 0.38 X 2.69 X (w) =

5 X 2.69

The value of part (a) is 37% too high when compared with this more accurate value.
The more accurate drag force is found using Eq. 8.6.30 to be

F,=C; X %pUiLw
=[0.073Re;”® — 1700 Re;'] X %pUﬁLw

-Us -1
- [oms(%) -1700(%) ]x%xl.l6x52 X4XS
. O X

I
=]

.88 N

The prediction of part (a) is 45% too high. For relatively short surfaces it is obvious
that significant errors result if the thinner laminar portion with its smaller shear stress is
neglected.
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8.6 Boundary-Layer Theory

8.6.5 Turbulent Boundary Layer: Empirical Form

This method of understanding turbulent flow (flat plate, zero pressure
gradient) uses obtained data.
More accurate that the power-law form but is harder to use.

The time-average turbulent velocity profile can be divided into the inner and
outer regions.
The inner region is defined as:

u _ f(u,y] , = [T ur shear velocity
u, / ’ p

The outer region is defined as:

U, —u _ (y _ .
= f g U.. - G: Velocity defect
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8.6 Boundary-Layer Theory

8.6.5 Turbulent Boundary Layer: Empirical Form

The inner region has three regions: viscous wall layer, buffer zone, and
turbulent zone.

Outer region
1 . I
~———————— Inner region ———1

1
Viscous 1 Buffer | Turbulent

wall 1 zone | zone
i
_ layer !
i
u_ ‘ ' .
P20+ " Increasing Re
=

L =2mm a9

N l | I
5 10 100 1000 10000
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8.6 Boundary-Layer Theory

8.6.5 Turbulent Boundary Layer: Empirical Form
Outer region
<—§— Inner region %E
Viscous 1 Rufl’cri Turbulent

wall 1 zone | zone
1
layer !

The viscous wall layer (fluctuates constantly):
Defined as a linear time-average profile. P
Very thin, extends to y* = 5 10 / 5

&=

" Increasing Re

Tl =244 +49

b 1 1 |

5 10 100 1000 10000

v/u;is the characteristic length in the turbulent inner region - The
dimensionless distance from the wall is hence:

# = )

y
The turbulent zone: v

Defined by a logarithmic profile.
From y* = 50 to y/6 = 0.15
Location of the outer edge depends on the Reynolds number

The buffer zone connects the viscous wall layer and the turbulent zone.
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8.6 Boundary-Layer Theory

8.6.5 Turbulent Boundary Layer: Empirical Form

_ —

iy

The outer region relates the velocity defect to y/o:

u.y
- ZX L <5

The turbulent zone is from 50 < == S
Above this range [y/d > 0.15] a data fit is used. 001 o1 015
)

These equations involve shear velocity u; which depends on wall shear 1.
To find the wall shear (1), the local skin-friction coefficient equation is needed

as seen: 0.455
Cr = , %)
' (In0.06Re )
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8.6.5 Turbulent Boundary Layer: Empirical Form

10 —

U.—u
U,

0.01 0.1 0.15 1.0
V&

For turbulent flow from the leading edge, the shear stress can be integrated
to find the drag.
The skin friction coefficient is then:

= LB Accurate up to Re, = 109

’ (In0.06Re, )

For the common turbulent region, the two logarithmic profiles are combined
as shown below:

Can easily find & from u;

Yo _raam™l 474
l-l,r V
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8.6 Boundary-Layer Theory

Estimate the thickness 8, of the viscous wall layer and the boundary-layer thickness at the
end of a 4.5 m-long flat plate if U, = 30 m/s in 20°C-atmospheric air. Also, calculate the
drag force on one side if the plate is 3 m wide. Use the empirical data.

Solution
To find the viscous wall layer thickness we must know the shear velocity and hence the

wall shear. The wall shear, using Eq. 8.6.40, and the shear velocity at x = 4.5 m are

1
T, = EPU:CI
_ lpUj 0.455
2 (In0.06Re, )?
= L X 1.2kg/m’ X 30°m*/s* D255 7 = 1.404 Pa
2 (]n006 30 X 45 )
146X 1070

u= (12 = 1.404Pa _ oo s
p 1.2kg/m?

The viscous wall-layer thickness is determined using Eq. 8.6.36 with y* = 5 as follows:

ud, _s
%
S5v.. §X146X107°
= —= =6.75 X10~°
& =— 082 675 X10"m

r
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8.6 Boundary-Layer Theory

The boundary-layer thickness is found using Eq. 8.6.42:

Ue — 244102 4174

u, v

30 04 L®B2ZX8 o4 - 5=005m
1.082 146 X 105 -

The drag force is calculated using Eq. 8.6.41 to be

F,=C, X %pU,,Lw

(In 0.06Re, )" 2
_ 0.523 - X l X 1-2 kg/mS X 302 mZISZ (4.5 * 3) n‘l2 = 21.8 N
(an 06 30 X 4.5 ) 2
146 X 1077

The laminar portion of the boundary laver has been neglected.



8.6 Boundary-Layer Theory

Estimate the maximum boundary-layer thickness and the drag due to friction on the side
of a ship that measures 40 m long with a submerged depth of 8§ m assuming the side of
the ship is approximated as a flat plate. The ship travels at 10 m/s. (a) Use the empirical
methods and (b) compare with the results using the power-law model.

Solution
(a) The boundary-layer thickness is found from Eq. 8.6.42. First we must find 7, from

Eq. 8.6.40 and then u,_ as follows:

- 0.455
To =z pUs ———
2 (In0.06 Re;)
= l X 1000 kg/m® X 10*m?/s? G255 ~ = 78.8 Pa
2 10 X 40 Y
In0.06 =

ey
p
’78.8N/m2
= m = 0.28 m/s

The maximum boundary-layer thickness is found using Eq. 8.6.42:

Ue —2241m™® 474

u, Vv
l = 2.44]n0'288 +74 .86=039m
0.28 10-5
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8.6 Boundary-Layer Theory

The drag is
F, = C; X 3pUiLw
= e o4 - xlx1000x102x40x8=29000N
(mo 06M) 2
’ 10-°
(b) First, calculate the Reynolds number: Re = 10 X 40/107% = 4 X 10°. We selectn = 9.
Equation (8.6.25) becomes
L3 -
= — =] [(1=|=]| |d
" L P05 5) |?
_9 pde
110" “dx

Equating this to the 7, of Eq. 8.6.24, we find that
8" dé = 0.281(vIU, )™ dx

Assume d = 0 at x = 0 and integrate. This provides

8 = 0.433x Re;!

10 X 40)"”_

105 0.33m

- 0.433(40)(

This value is 15% too low.
The drag force is found to be

F, = 0.071Re;" X pU2Lw

10 X 40)“” 1

=0.071( == x5x1000x102x40x8=21600N

This value is 25% too low. Obviously, the power-law equations are in significant error.
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8.6 Boundary-Layer Theory

8.6.6 Laminar Boundary-Layer Equations

The solution presented in Section 8.6.3 for the laminar boundary layer was an
approximate solution using a cubic polynomial to approximate the velocity
profile.

The Navier-Stokes equations can be simplified to find a better solution.

Assuming steady, incompressible, plane flow, the Navier-Stokes equation and
continuity equation become:

. . s " . ou du 1 dp . au
du du ) d-u d-u > Umm— + Do = / —
U— +o=— = ——.—I + V(—, + —,] dx ay p dx ay-
ax ay p dx ax* ay*

Prandtl Boundary-
Layer Equation
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8.6 Boundary-Layer Theory

8.6.6 Laminar Boundary-Layer Equations

The solution for the laminar boundary layer with dp/dx = 0 is:

n= _\*JE F F'=ulU. l(nF' - F) F"
VX 2
0 0 0 0 0.3321
1 0.1656 0.3298 0.0821 0.3230
2 0.6500 0.6298 0.3005 0.2668
3 1.397 0.8461 0.5708 0.1614
4 2.306 0.9555 0.7581 0.0642
5 3.283 0.9916 0.8379 0.0159
6 4.280 0.9990 0.8572 0.0024
7 5.279 0.9999 0.8604 0.0002
8 6.279 1.0000 0.8605 0.0000
VX . du , |V
= and: Ty = [ = 0.332pU3; -
\U. ayl, -0 xU,
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8.6 Boundary-Layer Theory

8.6.6 Laminar Boundary-Layer Equations

The local and general skin friction coefficients are then found to be:
0.664

JRe,

1.33

C, =
! JRe,

The displacement and momentum thicknesses are:

VX VX
o6,=1.72 ’— = 0.644 }—
4 L'Ivgo 0 (“r:n

Cr

—
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8.6 Boundary-Layer Theory

Atmospheric air at 30°C flows over a 8-m-long, 2-m-wide flat plate at 2 m/s. Assume that
laminar flow exists in the boundary layer over the entire length. At x = 8 m, calculate
(a) the maximum value of v, (b) the wall shear, and (c) the flow rate through the layer.
(d) Also, calculate the drag force on the plate.

Solution
(a) The y-component of velocity has been assumed to be small in boundary-layer theory.
Its maximum value at x = 8 m is found, using 8.6.51, to be

D= ﬂXL(nF’—F)
dx 2

Jl.6 X 1075 X 2

X 0.86 = 0.00172 m/s

where 0.86 comes from Table 8.5. Compare v with U, = 2 m/s.

(b) The wall shear at x = 8 m is found using Eq. 8.6.56 to be

v

1o = 0.332pU}

o

1.6 X 10~°m?/s
2m?/s X 8m

=0.332 X 1.16kg/m* X 2? mzlszJ

= 0.00154 Pa
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8.6 Boundary-Layer Theory

(c) The flow rate through the boundary layer at x = 8 m is given by

& VX 5
Q=j u Xwdy =w —ijF'd")
0 Uz Jo

where we have substituted for # and y from Eqs. 8.6.51 and 8.6.48. Recognizing that
JF’dn F, the flow rate is

0
Q =wl, \/E[F(S)— F(p)]

|
— 2mx2m/s JIGXIO mYsxX8m 3 28— 0.105m>s

(d) The drag force is determined to be

F, = %pUZLwC,
=l X 1.16kg/m* X 2°m?/s* X 8m X 2 m X S
2 V2 X 8/1.6 X 1073
= 0.049 N
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8.6 Boundary-Layer Theory

8.6.7 Pressure-Gradient Effects

If a pressure gradient is applied, the boundary-layer flow is affected.

A large, negative pressure gradient can relaminarize a turbulent boundary layer.
A positive pressure gradient causes the boundary layer to thicken and separate.
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(2) dp/dx =0
y y
auay P*ulay?
(b) dp/dx < 0 (afavorable gradient)

" away Pu/oy?
(c) dp/dx >0 (anunfavorable gradienat)

Fu/ay?
(d) dp/dx > 0 (separated flow)

Figure 8.28 Influence of the pressure gradient.
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8.7 Summary

Drag Lift
1 B CL = 1 )
7pV°A 7pV°A

Drag and Lift coefficients are: ¢, =

Vortex shedding occurs from a cylinder when 300 < Re < 10,000

The frequency of shedding is found from the Strouhal number.  St= g

Plane potential flows can be found by superimposing simple flows below.

Uniform flow: v =U,y éd=U,x
Line source: U= | b= L inr
2 2
. r r
Irrotational vortex: ¥ = —Inr ¢ = —=~0
2 2
Doublet : U= —E ing & = —E cosh
r r

: : : : , , r
The stream function for a rotating cylinder is: ¢y = U.y - %smﬂ +— Inr

LT
With the cylinder radius: "
,:_ = —_—

U
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8.7 Summary

The velocity components are:

ol ol

U = — V= ——
dy ox
1 o ol
I T —— U — — —
r of ar

For a laminar boundary layer on a flat plate (zero pressure gradient), the
exact solution is:

For a turbulent flow, the power-law profile (n = 7):
5= 0.38_\-[ \_Z, ) ¢ = 0.059("'6’3 )”5 C, = 0.073[ LZ, )

The wall shear and drag force per unit width are:

1 .
Ty = ;ijb; F, =

C,pUZL

09|
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