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Chapter 3 
Boundary layer
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• An understanding of external flows is important for aerospace engineers:
• To understand airflows around different components of an aircraft.

• Also for flow of fluids around turbines, buildings, automobiles, etc.
• Need to concentrate on high-Reynolds-number flows (Re > 1000).

1. Incompressible immersed flows (automobiles, low-speed aircraft, turbines)
2. Flows of liquids with a free surface (ship or bridge abutments)
3. Compressible flows with high-speed objects

• Flow is influenced by the presence of a boundary or another object.

8.1 Introduction
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• High-Reynolds-number incompressible immersed 
flows can be either:

• Flows around blunt bodies.
• Flows around streamlined bodies.

8.1 Introduction
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• Boundary layer near a stagnation point is a laminar boundary layer.
• For a high enough Reynolds number, there is a laminar-turbulent 

transition downstream:
• Flow may separate from the body, forming a separated region [region of 

recirculating flow].
• The wake is a region of velocity defect that grows because of diffusion.
• These boundaries are time-dependent.

8.1 Introduction
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• For the figure above, the drag and the lift is found as below:
• Drag: Force the flow exerts on a body in the direction of the flow.
• Lift: Force the flow exerts normal to the direction of flow. 

8.1 Introduction

• The lift and drag coefficients are seen above, with A as the projected 
area.



6

• A separated flow occurs when the main stream flow leaves the body. 
• When separation occurs with a high angle of attack near the forward 

portion of the airfoil, the flow is “stalled.”
• Stall is undesirable in aircrafts while cruising, but provides high drag when 

landing.

8.2 Separation

Chord: Line connecting the 
trailing edge with the nose
Angle of attack: Angle the flow 
makes with the chord
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• If a body has an abrupt change in profile, separation occurs near this 
change. 

• It will also occur upstream of the flat surface, and will reattach at some 
point downstream.

8.2 Separation
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8.2 Separation

• The y-coordinate is normal to the wall. The x-coordinate is measured along the wall.
• Downstream of the separation point, the x-component velocity near the wall is in the 

negative x-direction. Upstream of the separation point, the x-component of the velocity is in 
the positive x-direction.

• Separation point is at the point where

• Separation occurs when the flow approaches a stagnation region:
• Velocity is low and pressure is high (positive pressure gradient).
• As separation is undesirable, a positive pressure gradient is an adverse pressure 

gradient. A negative gradient is a favorable pressure gradient. 
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8.2 Separation

• Separation is influenced by:
• Geometry
• Pressure gradient
• Reynolds number
• Wall roughness
• Free-stream fluctuation intensity (intensity of the disturbances that exist away from 

the boundary)
• Wall temperature

• The last three have less but sometimes significant influences.



10

8.3 Flow around Immersed Bodies
8.3.1 Drag Coefficients

• The primary flow parameter that influences flow is the Reynolds number.
• Neglecting gravity, thermal, and surface tension effects.

• For a sphere, at Re < 1, there is creeping flow with no separation. 
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8.3 Flow around Immersed Bodies
8.3.1 Drag Coefficients

Drag coefficients for flow around a long cylinder and a sphere
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8.3 Flow around Immersed Bodies
8.3.1 Drag Coefficients
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8.3 Flow around Immersed Bodies
8.3.1 Drag Coefficients

Drag Coefficients for various blunt objects
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8.3 Flow around Immersed Bodies
8.3.1 Drag Coefficients (contd)

Drag Coefficients for various blunt objects
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
8.3.2 Vortex Shedding

• When long, blunt objects (such as circular cylinders) are placed normal to a 
fluid flow:

• Vortices/eddies are shed regularly and alternately from opposite sides.
• The flow downstream is called a Kármán vortex street. (40 < Re < 10000, 

with turbulence above Re = 300)
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8.3 Flow around Immersed Bodies
8.3.2 Vortex Shedding

• Dimensional analysis is applied to find this shedding frequency.
• For high Re (negligible viscous effects), shedding frequency depends on 

velocity and diameter f = f(V, D).
• This is the dimensionless Strouhal number.

• The Strouhal number is constant (0.21) over 300 < Re < 10000.
• Frequency is directly proportional to the velocity over a large Re range.



22

8.3 Flow around Immersed Bodies
8.3.2 Vortex Shedding

• Vortex shedding is considered when designing towers/bridges.
• When a vortex is shed, a small force is applied to the structure.
• If the shedding frequency is close to the natural frequency à Resonance
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
8.3.3 Streamlining

• If a flow must remain attached to the surface of a blunt object (cylinder/ 
sphere):

• It must move into areas of higher pressure as it goes into the rear stagnation 
point.

• At high Reynolds numbers (Re > 10), the slow-moving boundary layer flow 
cannot make it to the high-pressure area near the rear stagnation point 
(separation occurs).

• Streamlining: Reduces the high pressure at the rear of the object so the slow-moving 
surface flow can move rearward (into a slightly high-pressure region).

• Separation region will be reduced to a small percentage of the initial separated region on 
the blunt object.

• For effective streamlining trailing edge angle < 20 degrees.
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8.3 Flow around Immersed Bodies
8.3.3 Streamlining

• For a streamlined body:
• Surface area is greatly increased.
• Reduces most of the pressure drag, but increases the shear drag on the 

surface.
• Usually eliminates periodic shedding of vortices.

• The streamlined body cannot be so long that the shear drag is larger than 
the pressure drag plus shear drag for a short body.

• Needs to be optimized.
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
8.3.4 Cavitation

• This is the rapid change of phase from liquid to vapor that occurs when the 
local pressure is equal to or less than the vapor pressure. 
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8.3 Flow around Immersed Bodies
8.3.4 Cavitation

• There are four types of cavitation:
1. Traveling cavitation: Exists when vapor bubbles/cavities are formed, are 

swept downstream, and then collapse.
2. Fixed cavitation: Exists when a fixed cavity of vapor exists as a separated 

region.
3. Vortex cavitation: Found in the high-velocity (low pressure) core of a vortex 

(e.g., tip vortex leaving a propeller).
4. Vibratory cavitation: Exists when a pressure wave moves in a liquid (pressure 

pulse of high pressure followed by a low pressure).
� The low-pressure part of the wave causes cavitation.

• The first type of cavitation causes a lot of damage.
• Instantaneous pressures caused from the collapse are very high (~1400 

MPa).
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8.3 Flow around Immersed Bodies
8.3.4 Cavitation

• Cavitation occurs when the cavitation number (σ) is less than the critical 
cavitation number (σcrit).

• Depends on the body geometry and Reynolds number.

p∞: Absolute pressure of the free stream
pv: Vapor pressure

• As σ keeps decreasing, the cavitation increases in intensity (moving from 
traveling cavitation to fixed cavitation to supercavitation).
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8.3 Flow around Immersed Bodies
8.3.4 Cavitation

• The drag coefficient for small numbers is:
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8.3 Flow around Immersed Bodies
8.3.4 Cavitation

• The hydrofoil (airfoil-type body) is a shape that is associated with cavitation.
• Used to lift bodies out of water.
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8.3 Flow around Immersed Bodies
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8.3 Flow around Immersed Bodies
8.3.5 Added Mass

• If a body accelerates in a fluid, some of the fluid surrounding the body also 
accelerates.

• This can be accounted for by adding a small mass ma, to the mass of the 
body.

• Hence, summing forces for a symmetrical body:

• The added mass can be related to the fluid mass (mf) by:
k: Added mass coefficient
Sphere k = 0.5
Ellipsoid k = 0.2
Long cylinder k = 1.0
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8.3 Flow around Immersed Bodies
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• An airfoil is a streamlined body that reduces adverse pressure gradient.
• Hence separation doesn’t occur (at small angles of attack).
• Drag is mainly due to wall shear stress (viscous effects in the boundary 

layer).

8.4 Lift and Drag on Airfoils
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• For this thin boundary layer, lift can be approximated by integrating the 
pressure distribution.

• Drag is found by solving the boundary layer equations (Navier-Stokes 
equations) for shear stress:

• Then integrate.

8.4 Lift and Drag on Airfoils
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8.4 Lift and Drag on Airfoils
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• Maximum lift coefficients can be around 1.5
• Minimum drag coefficients for some particular airfoils can be as low as 0.0035

• The cruise condition (design lift coefficient) is around 0.3, which is near the 
minimum drag coefficient condition.

• Around an angle of attack of 2° (maximum stall condition of 16°)

• Conventional airfoils aren’t symmetric.
• Will have a positive lift coefficient at zero angle of attack.

• Lift is proportional to AOA, but deviates from a linear function just before stall.
• Drag is proportional to AOA (upto 5°), then changes in a nonlinear relation.

8.4 Lift and Drag on Airfoils
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• The total lift on an aircraft is supplied primarily by the airfoil.
• The effective length of the airfoil in this calculation is taken from the tip-to-tip 

distance.
• This is the wingspan.

8.4 Lift and Drag on Airfoils

• The drag coefficient is constant until around M = 
0.75

• Then there is an increase until the Mach number 
reaches unity.

• After this, the drag coefficient drops.
• Hence, to avoid high drag coefficients M = 1 should 

be avoided.
• At M = 1, there are regions of flow that 

oscillate from subsonic to supersonic. These 
forces need to be avoided.
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8.6 Boundary-Layer Theory
8.6.1 General Background

• For high Re flows:
• Viscous effects are confined to the thin layer of fluid (boundary layer) next to 

the body and to the wake downstream of the body.

• The edge of the boundary layer is arbitrarily defined as:
• The locus of points where the velocity equals 99% of the free-stream velocity.

For a thin boundary 
layer, the pressure in 
the boundary layer is 
the pressure at the wall 
[inviscid flow solution].
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8.6 Boundary-Layer Theory
8.6.1 General Background

• The boundary layer begins as a laminar flow (with zero thickness) at the 
leading edge of a flat plate.

• After a distance xT, laminar-to-turbulent transition. xT depends on:
• Free-stream velocity
• Viscosity
• Pressure gradient
• Wall roughness
• Free-stream fluctuation level
• Wall rigidity
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8.6 Boundary-Layer Theory
8.6.1 General Background

• For a flat plate with zero pressure gradient, the transition occurs:
• Flow on rough plates or with high free-stream fluctuation intensity à
• U∞xT/v = 3 X 105

• Flow on smooth rigid plates with low free-stream fluctuation intensity à
• U∞xT/v = 5 X 105

• The quantity [U∞x/v] is the local Reynolds number. 
• Hence U∞xT/v is the critical Reynolds number. 
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8.6 Boundary-Layer Theory
8.6.1 General Background

• Assume flow is laminar up to xT and turbulent afterwards.
• The turbulent boundary layer thickens much more rapidly than the laminar layer.

• Has greater wall shear and a greater slope at the wall.
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8.6 Boundary-Layer Theory
8.6.2 Von Kármán Integral Equation

• As seen from the velocity profile:
• Velocity goes from u = 0.99U∞ at y = δ to u = 0 at y = 0 over a small distance 

(boundary layer thickness).
• Hence the velocity profile for laminar and turbulent flow can be predicted well.
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8.6 Boundary-Layer Theory
8.6.2 Von Kármán Integral Equation

• Hence, from momentum flux, the von Kármán integral equation is:

• For an infinitesimal control volume, 
the integral continuity equation is:

• The integral momentum equation 
then becomes:
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8.6 Boundary-Layer Theory
8.6.2 Von Kármán Integral Equation

• For flow over a flat plate with zero 
pressure gradient, the simplified 
equation is:

Constant 
density
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8.6 Boundary-Layer Theory
8.6.2 Von Kármán Integral Equation

• Displacement thickness δd: The displacement of the streamlines in the free 
stream as a result of velocity deficits in the boundary layer.

• Momentum thickness θ: The equivalent thickness of a fluid layer (velocity 
U) with momentum equal to the momentum lost from friction.

• Used as a characteristic length in turbulent boundary-layer analysis.
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8.6 Boundary-Layer Theory
8.6.3 Approximate Solution to the Laminar Boundary Layer

• The von Kármán integral equation can be used to obtain an approximation to 
the laminar boundary layer on a flat plate with zero pressure gradient.

• Propose a velocity profile with the below conditions.
• From the velocity profile sketch and the x-component of the Navier-Stokes 

equation.

The velocity profile 
for a laminar flow is 
then:
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8.6 Boundary-Layer Theory
8.6.3 Approximate Solution to the Laminar Boundary Layer

• From the velocity profile in a laminar flow:

• δ(x) and τ0(x) are found to be as follows from von Kármán’s integral 
equation:
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8.6 Boundary-Layer Theory
8.6.3 Approximate Solution to the Laminar Boundary Layer

• Using the cubic velocity profile and the shearing stress, the local skin 
friction coefficient cf can be defined:

• This is a dimensionless wall shearing stress.

• By integrating the wall shear over length L, the skin friction coefficient Cf
(dimensionless drag force): 

ReL: Reynolds number 
at the end of the flat 

plate

-. = /01
+
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
8.6.4 Turbulent Boundary Layer: Power-Law Form

• One of two methods used for turbulent boundary-layer flow involves fitting 
the data for the velocity profile using a power-law equation.

• Following the previous methodology (von Kármán), the local skin friction 
coefficients and the shear stress relations can be found.
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8.6 Boundary-Layer Theory
8.6.4 Turbulent Boundary Layer: Power-Law Form

• Two forms of shear stress relationships:

• The local skin friction coefficient can be related to the boundary-layer 
thickness and local Reynolds numbers as:

Assuming turbulent flow 
from the leading edge
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8.6 Boundary-Layer Theory
8.6.4 Turbulent Boundary Layer: Power-Law Form

• The skin friction coefficient can then be found as:

• Finally, the displacement and momentum thicknesses can be found as:

• If L is around 3xT or less, then 
there is a significant laminar 
section on the leading edge. 
Equation is modified as such

• Used for a Recrit = 5 X 105
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
8.6.5 Turbulent Boundary Layer: Empirical Form

• This method of understanding turbulent flow (flat plate, zero pressure 
gradient) uses obtained data.

• More accurate that the power-law form but is harder to use.

• The time-average turbulent velocity profile can be divided into the inner and 
outer regions.

• The inner region is defined as:

uT: shear velocity

• The outer region is defined as:

U∞ - ū: Velocity defect
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8.6 Boundary-Layer Theory
8.6.5 Turbulent Boundary Layer: Empirical Form

• The inner region has three regions: viscous wall layer, buffer zone, and 
turbulent zone.
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8.6 Boundary-Layer Theory
8.6.5 Turbulent Boundary Layer: Empirical Form

• The viscous wall layer (fluctuates constantly):
• Defined as a linear time-average profile.
• Very thin, extends to y* ≈ 5 

• v/uT is the characteristic length in the turbulent inner region à The 
dimensionless distance from the wall is hence:

• The turbulent zone:
• Defined by a logarithmic profile.
• From y* ≈ 50 to y/δ ≈ 0.15
• Location of the outer edge depends on the Reynolds number

• The buffer zone connects the viscous wall layer and the turbulent zone.
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8.6 Boundary-Layer Theory
8.6.5 Turbulent Boundary Layer: Empirical Form

• The outer region relates the velocity defect to y/δ:
• The turbulent zone is from
• Above this range [y/δ > 0.15] a data fit is used.

• These equations involve shear velocity uT which depends on wall shear τ0.
• To find the wall shear (τ0), the local skin-friction coefficient equation is needed 

as seen:
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8.6 Boundary-Layer Theory
8.6.5 Turbulent Boundary Layer: Empirical Form

• For turbulent flow from the leading edge, the shear stress can be integrated 
to find the drag.

• The skin friction coefficient is then:

Accurate up to ReL = 109

• For the common turbulent region, the two logarithmic profiles are combined 
as shown below:

• Can easily find δ from uT
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
8.6.6 Laminar Boundary-Layer Equations

• The solution presented in Section 8.6.3 for the laminar boundary layer was an 
approximate solution using a cubic polynomial to approximate the velocity 
profile.

• The Navier-Stokes equations can be simplified to find a better solution.

• Assuming steady, incompressible, plane flow, the Navier-Stokes equation and 
continuity equation become:

Prandtl Boundary-
Layer Equation
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8.6 Boundary-Layer Theory
8.6.6 Laminar Boundary-Layer Equations

• The solution for the laminar boundary layer with dp/dx = 0 is:

• With:                      and:
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8.6 Boundary-Layer Theory
8.6.6 Laminar Boundary-Layer Equations

• The local and general skin friction coefficients are then found to be:

• The displacement and momentum thicknesses are:
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
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8.6 Boundary-Layer Theory
8.6.7 Pressure-Gradient Effects

• If a pressure gradient is applied, the boundary-layer flow is affected.
• A large, negative pressure gradient can relaminarize a turbulent boundary layer.
• A positive pressure gradient causes the boundary layer to thicken and separate.
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8.7 Summary
• Drag and Lift coefficients are:

• Vortex shedding occurs from a cylinder when 300 < Re < 10,000
• The frequency of shedding is found from the Strouhal number.

• Plane potential flows can be found by superimposing simple flows below.

• The stream function for a rotating cylinder is:
• With the cylinder radius:
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8.7 Summary
• The velocity components are:

• For a laminar boundary layer on a flat plate (zero pressure gradient), the 
exact solution is:

• For a turbulent flow, the power-law profile (η = 7):

• The wall shear and drag force per unit width are:


