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Chapter 1

Flow in Open
Channels
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10.1 Introduction

Free surface: The interface between the air and the upper
layer of water.

Ocean waves, river currents, and overland flow of rainfall
are examples of free-surface flow that occur in nature.

Velocity contours
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Figure 10.1 Free-surface flow: (a) centerline velocity distribution: (b) cross section:
(¢) one-dimensional model.



10.2 Open-Channel Flows
In relatively short reaches, called transitions, there is a rapid
change in depth and velocity.
Rapidly varied flow: A rapid change in depth and velocity.

Gradually varied flow: In extensive reaches of a channel,
the velocity and depth change in a slow manner.



10.2 Open-Channel Flows

Table 10.1 Combinations of One-Dimensional Free-Surface Flows

Type of flow Average velocity Depth
Steady, uniform V' = const. y = const.
Steady, nonuniform V =V(x) ¥y =y(x)
Unsteady, uniform V =V) y =)
Unsteady, nonuniform V =V(x,1) ¥ =p(x,1)

Hydraulic jump

Hydraulic jump
1

GVF RVF

Figure 10.2 Steady nonuniform flow in a channel.
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10.2 Open-Channel Flows

v
Froude number Fr=—
VgL

For example, if Fr > 1, the flow possesses a relatively high velocity
and shallow depth; on the other hand, when Fr < 1, the velocity is
relatively low and the depth is relatively deep.

Hydrostatic pressure

distribution V2
assumed 20
/
s s _{ Energy grade line (EGL)
by —— 3
P : Water surface (WS)
%
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Figure 10.3 Reach of open-channel flow.
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10.3 Uniform Flow

Channel cross sections can be considered regular or irregular.

Regular section: Section whose shape does not vary along the
length of the channel.

e T@T

Figure 10.4 Representative regular cross sections: (a) rectangular; (b) trapezoidal;
(c) circular.



10.3 Uniform Flow

Wetted perimeter: The length of the line of contact between the liquid
and the channel.

Hydraulic radius: The area divided by the wetted perimeter.
For a rectangular channel:

R = A ]).1'
A=by P=b+2y P b+2y

For a trapezoidal section: A=by + =y (m +m,)

—

P=b+y(l+m +1+m)

B=>b+y(m +m,)



10.3 Uniform Flow

For a circular cross section:

2

A= T(a — sina cosa)

a = cos"(l = 21)
P=ad d
B =dsina

~ Flood plain

(a)

q

(b)

Figure 10.5 Generalized section representation: (a) actual cross section: (b) composite
cross section.



10.3 Uniform Flow

Equation for Uniform Flow:

Uniform flow occurs in a channel when the depth and velocity do not
vary along its length.

Chezy-Manning equation: 0= LR[S,

n

The depth associated with uniform flow is designated y,; it is called
either uniform depth or normal depth. Uniform flow rarely occurs in
rivers because of the irregularity of the geometry.
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10.3 Uniform Flow

Water is flowing at a rate of 4.5 m*/s in a trapezoidal channel (Figure 10.4b) whose bot-

tom width is 2.4 m and side slopes are 1 vertical to 2 horizontal. Compute y;, if n = 0.012
and S, = 0.0001.

Solution

Given geometrical data are b = 2.4 m and m; = m, = 2. Rearrange Eq. 10.3.13, noting
that R = A/Pand¢ = 1:

ASIS nQ

Substituting in the known data and trapezoidal geometry, one has

1 . 5/3
[2"% t Rt 2)] _ 0.012X45
24+ pd1+ 2P J0.0001

Solving for y;, either by trial-and-error or by use of computational software, yields
Yo = 1.28 m.
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10.3 Uniform Flow

Uniform flow occasionally occurs in a 5-m-diameter circular concrete conduit
(Figure 10.4c), but the depth of flow can vary. The Manning coefficient isn = 0.013, and
the channel slope is S, = 0.0005. (a) Calculate the discharge for y, = 3 m, (b) Plot the
discharge-depth curve.

Solution
(a) First, use Eq. 10.3.10 to find the angle a:

a = cos™'(1 —2y,/d)
= cos™!(1 — 2 X 3/5) =101.54° or 101.54 X /180 = 1.772 rad

Using Eqs. 10.3.7 and 10.3.8, the area and wetted perimeter are

2 2
A= dT(a — sina cosa) = 57(1.772 — sin101.54° cos 101.54°) = 12.3 m?
p=ad=1772X5=8.86m
The hydraulic radius is then

Finally, the discharge, when y = 3m, is

0= lAR”’S”2 . X 12.3 X 1.388%” X 0.0005°° = 26.3 m’/s
n 0.013 -

Mathcad is employed to generate the curve. Note that the solution is generalized,
so that any diameter, Manning coefficient, or channel slope can be entered into the
algorithm. Equations 10.3.7 and 10.3.8 are used to define the area and wetted perim-
eter, respectively. Either SI or English units can be employed by properly defining the
parameter ¢;. In this problem a value of 1.0 is used. The MATLAB solution is shown
in Figure E10.2 and in Appendix E, Figure E.1. Use y rather than y,.

Input diameter, Manning coefficient, and channel slope:

d:=5 n:=0013 S;:=0.0005 ¢:=1.0

11
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10.3 Uniform Flow

Define geometric functions:

= v (1 = 7L
aly) : ams(l ZdJ

A(y) = dT + (aly) — sin(a(y)) - cos(a(y)))
P(y) = aly) -d

A(y)
R = —_—
(y) )

Define discharge function, (i.e., Manning’s equation):
_G 3
Qy) = ~H+ AR S,

Plot depth versus discharge:

y:=0,0.01..d

2 / >
1
0
0 10 20 30 40 50

Q(y)
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10.3 Uniform Flow

Most Efficient Section

TP = yAS,
2dA 2A4 5 dA
— (452 1+ 252 _ = 2184
P=c4 bdb B 2 ab
p=b+ 24 _
b b2
24 n
b"‘T—CA b=2yo

13



10.4 Energy Concepts

Total energy: The sum of the vertical distance to the channel bottom

measured from a horizontal datum, the depth of flow, and the kinetic
energy head.

Energy is actually an energy head.
Hl —_ H: + /’1_

h, is the head loss.

14



10.4 Energy Concepts

Specific Energy

Specific energy: Measurement of energy relative to the bottom of the

channel.

i Ve
E=y+ —
2g

Specific discharge: The total discharge divided by the channel width
(valid only for a rectangular channel).

SH[e

qg = = I'l' E = .1' -

15
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10.4 Energy Concepts

YA VA
Fr<l
E = y (asymptote)
L. / Fr<l
) Alterpate e [TTTTTTTTTTTTTTOS Fr=1
depth points |
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E. E Ymax q
(a) (b)

Figure 10.6 Variation of specific energy and specific discharge with depth: (a) E versus y
for constant ¢: (b) g versus y for constant E.

Critical depth: The depth for which specific energy is a minimum.
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10.4 Energy Concepts

Alternate depths: The two depths of flow that are possible for a given
specific energy and discharge.

q = \.IZg_r:( E—y) gy [gy*

For a generalized section, the specific energy is written in terms of the
total discharge Q and the cross-sectional area A as

17



10.4 Energy Concepts

Water is flowing in a triangular channel with m, = m, = 1.0 at a discharge of Q = 3m*/s.
If the water depth is 2.5 m, determine the specific energy, Froude number, hydraulic depth,
and alternate depth.

Solution

Recognizing that b = 0, the flow area and top width are computed from Eqgs. 10.3.4 and
10.3.6 as follows:

A= %yz(m, + m,)

b | =

X 2.5 X (1+1)=625m?
B = (m +my)y

141)X25=50m

(
(
Using Egs. 10.4.12 and 10.4.15, E and Fr are found to be

Q2
2gA4°

E=y+

o =2.51m

=254 ——
2% 981X 625 ———

Fr= o'B
g4

2
= X5 137
9.81 x 6.25°
The hydraulic depth is
B 50 —

The alternate depth is calculated using the energy equation. Recognizing that 4 = y* we have

3’.’
2 X 9.81 X (y°)
0.459

ry

y

251=y+

=y+

A trial-and-error solution provides y = 0.71 m.

18



10.4 Energy Concepts

Use of the Energy Equation in Transitions

VA
Fr<l 7N PR ' .
— h . T
Flow l Y T
)‘C ----- i -’r--- : :
P : 1
| S
E, E
h —
(a) (b)

Figure 10.7 Channel constriction: (a) raised channel bottom; (b) specific energy diagram.

The condition of choked flow or a choking condition implies that
minimum specific energy exists within the transition.
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10.4 Energy Concepts

A rectangular channel 3 m wide is conveying water at a depth y; = 1.55m and velocity
¥; = 1.83m/s. The flow enters a transition region as shown in Figure E10.4a, in which
the bottom elevation is raised by # = 0.20 m. Determine the depth and velocity in the
transition, and the value of /4 for choking to occur.

Fr<l
> h
Fo
1

(a)

Figure E10.4

Solution
Use Eq. 10.4.4 to find the specific discharge to be

q=Vx
=1.83 X 1.55 = 2.84 m?/s

The Froude number at location 1 is

|4
Fr= A
Van
1.83

= =047
0.81X1.55

which is less than unity. Hence, the flow at location 1 is subcritical. The specific energy at
location 1 is found, using Eq. 10.4.3, to be

20



10.4 Energy Concepts

Vi
E =+ —
1 =N 2g

2
1554+ 8 _1om
2%

The specific energy at location 2 is found, using Eq. 10.4.16, to be

E,=E —h
=172-020=152m

If E, > E_, it is possible to find the depth y,. Therefore, E, is calculated first. From
Eqs. 10.4.10 and 10.4.11 the critical conditions are

(2] (3 e

g 9.81
B = o3x % 14
2 2

Hence, since E, > E,, we can proceed with calculating y,. The depth y, can be evaluated
by substituting known values into Eq. 10.4.5:

2.84*

Sy 45 st
P2 TXo’Ix 2

The solution is

PN
[
= |G
(=)
B

[

28 s
36

—

The flow at location 2 is subcritical since there is no way in which the flow can become
supercritical in the transition with the given geometry.

The value of 4 for critical flow to appear at location 2 is determined by setting E, = E,
in Eq. 10.4.16:

h=E —E =172—-140=031m

21



10.4 Energy Concepts

Water flows freely from a reservoir into a trapezoidal channel with bottom width b = 5.0 m
and side slope parameters 7, = m, = 2.0. The elevation of the water surface in the reser-
voir is 2.3 m above the entrance crest. Assuming negligible losses in the transition and a
negligible velocity in the reservoir upstream of the entrance, find the critical depth at the
transition and the discharge into the channel.

Figure E10.5

Solution
The total energy at location 1 in Figure E10.5 is j since the kinetic energy in the reservoir
is negligible (V; = 0). Equating the total energies at locations 1 and 2 gives

nW=E +z

Since critical conditions occur at location 2, Eqs. 10.4.12 and 10.4.14 can be combined to
eliminate the discharge, with the result
A

E =y +—
2 =) >B

Elimination of E, in the two equations yields the expression

2

byc o %("71 +’n2)yc

’—Za=‘.+_=‘.+
N T T T O+ (my A may]

or, with the given data, the expression becomes

Sy, + %(2 +2))2

23=p 4 —2
25+ 2+ 25

The relation above is a quadratic in y,. The positive root is chosen, which is
y.=L70m

Subsequently, one can find that 4 = 14.28 m* and B = 11.80 m. Use Eq. 10.4.14 to find
the discharge to be

22



10.4 Energy Concepts

Energy losses in expansions and contractions are known to be
relatively small when the flow is subcritical.
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Flow Measurement

Weir: A device placed in a channel that forces the flow through an
opening or aperture, often designed to measure the discharge.

Flow will converge and accelerate to a critical condition near the crest
of the weir.

23



10.4 Energy Concepts

Figure 10.9 Broad-crested weir.

2 (2
== (=50
Q33g
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10.4 Energy Concepts

© (2 [ 1) (2
(a) (b)
Figure 10.10 Rectangular sharp-crested weir: (a) ideal flow; (b) actual flow.

0= C,%JZ_ng"’

25



10.4 Energy Concepts

@ ®
Figure 10.11 Contracted (a) rectangular and (b) V-notch weirs.

—c 3 8 \yse
¢ c,lst_g(szy

26



10.4 Energy Concepts

Determine the discharge of water over a rectangular sharp-crested weir, 5 =1.25m,
Y = 0.35m, & = 1.47 m, with side walls and with end contractions. If a 90° V-notch weir
were to replace the rectangular weir, what would be the required Y for a similar discharge?

Solution
For the rectangular weir, using Eq. 10.4.26, the discharge coefficient is

C, =0.61 + 0.08K = 0.61 + 0.08 X MR 0.63
h 1.47

Substitute into Eq. 10.4.25 and calculate
0=C, 2z br"
=0.63 X % X 2 X 9.81 X 1.25 X 0.35%?

=048 m*/s
With end contractions the effective width of the weir is reduced by 0.2 Y, resulting in

0= C,%\/2_g(b — (507 72
=0.63 X % X 2 X 9.81 X (1.25 — 0.2 X 0.35) X 0.35*2
=045 m’/s

With a discharge of Q = 0.48 m°/s, use Eq. 10.4.27 to find Y for the 90° V-notch weir:
_ 205
Y= 3 9
_C, X o5 X J2g tan(8/2)
_ 245
0.482

= 3 = 0.66 m
0.58 X . X 42 X 9.81 X tan45°

27
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10.4 Energy Concepts

Parshall flume: An open flume where the throat is constricted to

choke the flow to create critical flow followed by a hydraulic jump.

Q — 4BH1.5228‘°”3°

06lm  0915m
| I
1

e gl
Flow 5 = 1
— {
B B
= 5 +122m ]
"‘
1\ \
] \
; =1 A
Gaging well for :'.‘ R Plan
measurement of E il 3
depth H !
0.6l mR i
T
1
1
_ 1
" ! 4
229 mm T
t 76.2 mm
Elevation

Figure 10.12 Parshall flume. (Based on Henderson, Open Channel Flow, 1st, 1966,

Pearson Education, Inc., Upper Saddle River, New Jersey.)
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10.5 Momentum Concepts

 — —~

(a)

2]
_ —
AN —Di P :
I F .
(b)

Figure 10.13 Channel flow over an obstacle: (a) idealized flow: (b) control volume.

M|_M2=§ 2 2 2 2
2 gy 2 gy
Jll=447+g
gA
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10.5 Momentum Concepts

Ay

=Y

aM BQ? 2 3
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10.5 Momentum Concepts

In a rectangular 5-m-wide channel, water is discharging at 14.0 m* /s (Figure E10.7). Find
the force exerted on the sluice gate when y, = 2mand y, = 0.5m.

Fri<1

—p )
Fl'2>l

Figure E10.7

Solution
Using Eq. 10.5.3, the momentum functions at | and 2 are

M, = A4y, + g
g4,

=sx2x14+— _120m

981X5%X2

3

M2 =A2J_;2 +£
g4

2

(14)°

—_ =862
9.81 X 5 X 0.5

=5X%X0.5X0.25+

The resultant force acting on the fluid control volume is determined, using Eq. 10.5.2,
to be

F=vyM,-M,)
= 9800 X (12.0 — 8.62) = 33 100 N

Hence the force on the gate acts in the downstream sense with a magnitude of 33.1 kN.

31
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10.5 Momentum Concepts

Hydraulic Jump
A phenomenon where fluid flowing at a supercritical state will undergo
a transition to a subcritical state.

EGL |
Y2 _ l(\/l + 8Fr2 1) TTss h;
yoo 2 . P> 1 i
v, V2 —> Fp, <1
1 (2
( V, — V )3 .
hj — A A Figure 10.15 Idealized hydraulic jump.
40y
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10.5 Momentum Concepts

Table 10.2 Hydraulic Jumps in Horizontal Rectangular Channels

Upstream
Fr Type Description
1.0-1.7 Undular Ruffled or undular water ‘ s
surface: surface rollers form ~ .
near Fr=1.7 &
1.7-2.5 Weak Prevailing smooth flow; low _H
energy loss i —-
2545 Oscillating Intermittent jets from bottom Oscillating jet
to surface, causing persistent  Roller
downstream waves
i ¥ - -
4590 Steady Stable and well-balanced; energy M
?:;l;):?;);n cgntamed in main e o -
=9.0 Strong Effective, but with rough,

wavy surface downstream

Source: Adapted with permission from Chow, 1959. (Based on Chow, 1959)
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10.5 Momentum Concepts

A hydraulic jump is situated in a 4-m-wide rectangular channel. The discharge in the
channel is 7.5m?/s, and the depth upstream of the jump is 0.20 m. Determine the depth
downstream of the jump, the upstream and downstream Froude numbers, and the rate
of energy dissipated by the jump.

Solution
Find the unit discharge and upstream Froude number:
-2
=%
=15 _ 1.88 m?/s
4
Fr, = L}
&N
_ 1.88 - 671
V9.81x 0.20° T

The downstream depth is computed, using Eq. 10.5.9, to be

3, = %(,/1 + 8F — 1)
%(\/1 +8X67F —1)=180m

The downstream Froude number is

Fr, = q
2

S 0.25

V9.81x1.80° T

The head loss in the jump is given by Eq. 10.5.11:

2

_ 3
_ (1800200 _ o

4% 0.20 X 1.80
Hence, the rate of energy dissipation in the jump is (see Eq. 4.5.25)

YOh; = 9800 X 7.5 X 2.84 =2.09 X 10° W or 209 kW

34
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10.5 Momentum Concepts

A translating hydraulic jump is a positive surge wave, maintaining a
stable front as it propagates into an undisturbed region.

W J—

— V, sl Vi +0
—p V) —p V) + W0

0 2 0 2

(a) (b)

Figure 10.16 Translating hydraulic jump: (a) front moving upstream; (b) front appears
stationary by superposition.



10.5 Momentum Concepts

Drag on Submerged Objects

Figure 10.17 Stilling basin with baffle blocks.

36



10.5 Momentum Concepts

In the flow situation presented in Example 10.8, a series of baffle blocks is placed in the
channel as shown in Figure E10.10. Laboratory experimentation has shown that the
arrangement has an effective drag coefficient of 0.25, provided that the blocks are sub-
merged in the flow. If the blocks are 0.15 m high, and if the discharge, upstream depth and
width remain the same as in Example 10.8, determine the depth downstream of the jump
and the rate of energy dissipated by the jump. The total width of the blocks is the channel

width.
-
]
b = L —o
1]
- 1]
[]
Y1 e
@ h (2]
Figure E10.10
Solution

It is necessary to use Eq. 10.5.2 since obstacles (i.e., the baffle blocks) are placed within
the control volume. The upstream velocity is

37



10.5 Momentum Concepts

The relation reduces to

0.721

The force F due to the presence of the baffle blocks is computed using Eq. 10.5.14: ¥+ —— =331
Y2
s G AT
2 pT The trial-and-error solution for y, is 1.70 m. The change in specific energy between

9.38? locations 1 and 2 is
=0.25 X (4 X 0.15) X 1000 X T = 6600 N

Note that the frontal area is the width of the channel multiplied by the height of the E, —E, =y+ 2q"2 - [Yz + 2q“2 J
blocks. Substituting known conditions into Eq. 10.5.2, making use of Eq. 10.5.4 which & e
defines M for a rectangular channel, and noting that ¢ = 7.5/4 = 1.88 m?/s, we find —02 1.882 170+ 1.882

s s s s o T 2Xx9.81x0.2? ' 2 X 9.81 X 1.70?

b[)i+-q—]—b[y—2+-7—]=— —204m
2 gn 2 gn) v
4 0.22 + 1.882 4 b + 1.88% | _ 6600 The rate of energy dissipation, therefore, is
2 9.81 x0.2 2 9.81y, 9800

YO(E, — E,) = 9800 X 7.5 X 2.94
=216 X10°W or 216 kW
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10.5 Momentum Concepts

Numerical Solution of the Momentum Equation

Consider a trapezoidal channel with conditions known at location 1
upstream of the jump.

F
4"'12 - “"{l + —_— = 0
Y

Z amy, +30)+ —Z—— —m,+ Z =0
6 g(by, +my;) Y

39
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10.6 Nonuniform Gradually Varied Flow

Differential Equation for Gradually Varied Flow

‘;. — T ] et h; = SAx
4 x l T3 --EGL
Vi
| Hvl =
Y2
TS o v_
(1}“ _ So - S ’ 1 Y S R
dc« 1-—Fr e—
<1 _‘\ -‘_‘-u
Daom———o-t ;i \ i ' b i i i i i i i i i i i 4 -

Figure 10.18 Nonuniform gradually varied flow.
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10.6 Nonuniform Gradually Varied Flow

Using an appropriate control volume for gradually varied flow, show that the slope S of
the energy grade line is equivalent to 7, /y R.

!
I
S
1
I
I
|
I
I
Ca
B e et
!
I
|

=
Il
a—

.4—yA§+‘%(yA§)Ar

1 fop A.t
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10.6 Nonuniform Gradually Varied Flow

Solution
The control volume is shown in Figure E10.12. The resultant force acting on the control
volume is due to the incremental change in hydrostatic pressure[yd( AV )/dx]Ax, thecom-  Since sin § = S, for small 6, the equation above can be rearranged in the form

ponent of weight in the x-direction yAsinf Ax, and the resistance term 7, PAx. Using the

momentum equation To _g —_ dy vadv

YR dx gadx
zl;;' =’h(VZX - ;,lx) ‘y X g X
=l 2
withV,, — ¥, = (dVldx) Ax results in dx\’ 2g
d _ . dv . . .. . L .
—‘)'E(A}-') Ax +yA sinf Ax — 7, Ax = pVAF Ax Upon comparison with Eq. 10.6.2, it is seen that the right-hand side isequivalent to S — S,

and consequently,

This relation can be simplified by noting that
e _g =S-8,

d(4y) _ dAn)dy _ dy YR
dx dy dx dx
or
and P = A/R. Substitute and divide the equation by y4Ax, the weight of the control
volume, and find that = To_
YR
dx YR g dx
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10.6 Nonuniform Gradually Varied Flow

Channel Profile Depth & | aE
e pe rahge Fr | dc | dx
Mild M | y=p=>) | <Il| =0 =0 )
5, <S5, Horizootal
=
e M, |p>y=y| <1| <0| <0
M, |w=y=y| =1| =0| <0
teep S, Y=y | <1| =0| =0
5, =5,
<
e S; y=y=y | =1 <0| =0
S, | ¥w=wp=y| =1| =0| <0
Critical G |y=yory| <1| =0| =0 e e =
s. =s‘ c3 /;.—_______-
} ——
o G yeory, =y | =1| =0| <0
Horizontal | H, y=y | <1| <0| <o .
s.=0 \s
Yo o™ Ye L = - N
H Y=y =1 =0| <0 ,—/—'—'_E‘
Adverse A, Y=y <1 <0| <0 “
SOVAIT e B R Ry p e ———————
Yo undefined Ye == ’_.————"/A;
As =y | =1| =0| <0 3
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10.6 Nonuniform Gradually Varied Flow

By assuming a wide rectangular channel, develop the right-hand side of Eq. 10.6.4 to
show how dyldx varies with y.

Solution

For a wide rectangular channel, assume that b => y, so that the wetted perimeter is approx-
imated by P = b. The hydraulic radius then becomes R = A/P — (by)/b = y. Noting that
QO = gb, the Chezy-Manning equation, used to evaluate S, simplifies to

_ (gbn)* _ (gn)
( by )z 1073

It is assumed that in the Chezy-Manning equation ¢; = 1. For a rectangular section the
square of the Froude number (see Eq. 10.4.9) is

Substituting into Eq. 10.6.4 gives

dy _ Sy — (qn) y'*®
%
dx  1—q*gy)

Since (gn)*y, ™" = S, and Fr? = ¢*/(gy?) = 1, the relation can be written as

dv _ o 1= (ulp)™
dx = (yc/y)J

This equation can be used as an alternative to Eq. 10.6.4 to evaluate the water surface
profiles shown in Table 10.3.



10.6 Nonuniform Gradually Varied Flow

Controls and Critical Flow

A control is a channel feature that establishes a depth-discharge
relationship in its vicinity.

1 vV —w)’ B 0 -
I_ENI+8 1} w=V*xgy=V *

gy

If Fr < 1, the first wave would travel upstream, and the opposite wave
would travel downstream at a speed less than 2c. For Fr > 1 in the
channel, since V > ¢, both waves are swept downstream.
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10.6 Nonuniform Gradually Varied Flow

Figure 10.19 Representative controls: (a) sluice gate: (b) change in slope from mild (S;,) to steep (S, ):
(c) entrance to a steep channel: (d) free outfall.
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10.6 Nonuniform Gradually Varied Flow

Profile Synthesis

Conjugate depth

Figure 10.20 Example of profile synthesis.
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10.6 Nonuniform Gradually Varied Flow

In a rectangular channel, » =3 m, n = 0.015, S, = 0.0005, and Q = 5m’/s. At the
entrance to the channel, flow issues from a sluice gate at a depth of 0.15 m. The channel
is sufficiently long that uniform flow conditions are established away from the entrance
region, Figure E10.14a. Find the nature of the water surface profile in the vicinity of the
entrance and the depth before the hydraulic jump.

Yo
l Smifs =

Figure E10.14

Solution
First find y, and y, to determine the type of channel. To find y,, follow the method shown
in Example 10.1. Substitute known data into the Chezy-Manning equation:

30"  _0015x5 _ .,

(3+2y,)"  0.0005
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10.6 Nonuniform Gradually Varied Flow

Solving gives y, = 1.39 m. Next, the critical depth is computed to be

2 1/3
, =(q_]
g

5 U3

Since y, > y,, a mild slope condition exists. The gate is a control and there will be an
M, profile beginning at the entrance, terminated by a hydraulic jump. Downstream of the

Jump, the condition of uniform flow acts as a control, so at that location the depth is y,,
and the Froude number is

q
Fr, =
ey
o = 0.325

V9.81 X 1.39°

Using Eq. 10.5.10, the depth before the jump is

’D(m—l)
ﬁ(m-l)=m

2

s

)Fl —

TN

The depths y, and y, have been calculated to two significant figures, since the Manning
coefficient is known to only two significant figures. Figure E10.14b shows the profile.

49



P \/

10.7 Numerical Analysis of Water Surface

Profiles
QOn 1 — B
T == -1=0
_ anl
V)= SO FIROIT

Standard Step Method

d_E = i y — ﬁ
dx dx\© 2g

=S —S(y)
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10.7 Numerical Analysis of Water Surface
Profiles

- —
v i E; — i o
; Fi— ws
— i_‘ Yis1 E Eier
X; \ y !
Ax; ".'i+1 -
Figure 10.27 Notation for computing gradually varied flow.
Xi+1
E. —E= j [So - S(.V)] dx . E. —E
‘-"t Xigg = X; + S —S(}’ )
= (-\}'+| _-\'i)I:So - S(}’m)] ° "
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10.7 Numerical Analysis of Water Surface
Profiles

Water is flowing at Q = 22 m?/s in a long trapezoidal channel, b = 7.5 m, m, = m, = 2.5.
A free overfall is located at the downstream end of the channel, where x = 2000 m. For
n = 0.015, S, = 0.0006, find the water surface profile and energy grade line for a distance
of approximately 800 m upstream from the free outfall.

Solution

Equations 10.7.1 and 10.7.2 are used to evaluate y, and y, by substituting in known
data:

2/3
22 X 0.015 X [7.5 + 2y0\/1 + (2-5)2]

—1=0
513
[7.5 ¥ + % 2 (2.5 + 2.5)] J/0.0006
(22)* X [7.5 +y.(2.5 + 2.5)] =
- —1=

9.8 X [7.5);( + %yf (2.5 + 2.5)]
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10.7 Numerical Analysis of Water Surface

Profiles

The roots of these equations can be found using a routine such as Excel Solver®; the
solutions are y, =1.29 m and y, = 0.86 m. Hence the channel is a mild type, and con-
trol will be close to the free overfall at the downstream end of the channel. Without any
serious loss of accuracy, one can assume that critical conditions will exist at the free
overfall. Referring to Table 10.3, the profile upstream of the overfall will be of type
M,. An Excel spreadsheet solution is shown in Table E10.15. The upper part shows the
values of critical and normal depths found by using Solver. In the residual column are
very small numbers that should be close to zero; see the two above equations. The lower
part of the table shows the step method solution. Calculations proceed from station 1 to
station 5 in a straightforward manner, with arbitrary values of depth selected and placed
in the y column. The beginning value of x (2000 m) is placed in the first cell of the x
column, and the remaining distances are computed as explained on the previous page. At
station 6, different values of y are chosen until the distance is close to the desired value
of 1200 m: a depth of 1.27 m results in a distance of 1230 m, which is acceptable. The
spreadsheet equations for computing normal and critical depths, and for the step method,
are provided in Appendix E. In addition, a MATLAB solution to this problem is shown
in Appendix E, Figure E.5.

Table E10.15

Depth [m] Residual
Critical 0.865 1.087E-06

Normal 1.292 1.812E-06

Station y[m] A[m?] V [m/s] E[m] ¥, [m] S(¥,) Ax[m] x[m]
1 0.865 8.358 2.632 1.218 2000
2 0.950 9.381 2.345 1.230 0.908 2.165E-03 -8 1992
3 1.050 10.631 2.069 1.268 1.000 1.527E-03 —41 1951
4 1.150 11.931 1.844 1.323 1.100 1.081E-03 -114 1837
5 1.250 13.281 1.656 1.390 1.200 7.866E-04 -357 1480
6 1.270 i ki 1.623 1.404 1.260 6.57T4E-04 -250 1230
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10.7 Numerical Analysis of Water Surface
Profiles

Numerical Integration Method

A useful integration scheme is the two-point Gauss—Legendre
quadrature.

® Vi+1 l — Fr2
i+1 et
v SO - S

G+ " G(}")d.."

L ’1',

dy

J}‘HIG(};)dy - -Vi+12_ Vi [G( YVier TV — \/5/3(}"&1 — Y ) J

2 -

2
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10.7 Numerical Analysis of Water Surface

Profiles
Irregular Channels
B Q2 K — ((lAR3’3 )I_ (3 A4) [K,-3 ]
S = —=— = 2 —
(k) & “TEky > A?

Direct Integration Methods

So

‘. &{u ~ F(u,N) + [L)“—F(v.f )}

F(u,N) =J dn
‘ 0
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10.7 Numerical Analysis of Water Surface

Profiles

A wide rectangular channel conveys a discharge of ¢ = 3.72 m*/s per meter width on a
slope of S, = 0.001. At a given location the depth is 3 m. Determine the distance upstream
where the depth is 2.5 m. The Manning coefficient is 0.025.

Solution
By comparing Eq. 10.7.12 with the result of Example 10.13 for a wide rectangular chan-
nel, we find that N = 3.33 and M = 3. Therefore, one can calculate J to be

_ N _ 3.33 _
N-M+1 333-3+1

J 255

Also from Example 10.13, we can determine y;, in the manner

22 \310 - 5\ ¥10
b = (L8 _ (3.72 X 0.025 ] 1ol
S, 0.001

Furthermore,

2 \1/3 2\ V3
g A

Substitute these values into Eq. 10.7.13 and simplify:

0001 1.91 33
=1910[ u — F(,3.33) + 0.151F(2,2.5)]

3
e = )] [u — F(u,3.33) + (2) X ;;SF(U,ZS)]
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10.7 Numerical Analysis of Water Surface
DerAafilAc

Since y; > y,, and at the downstream location y > y,, the profile is an M, curve. At the
downstream location where the depth y =3 m,

Uu=-—==——=157 and v=u"" =1.57°%25 =1.825
From Appendix E, Table E.1, making use of linear interpolation between recorded values
we find that
F(1.57,333) =0.166 and F(1.825,2.5) = 0.300
Considering x as a distance measured from an arbitrary datum, we find that

x =1910(1.57 — 0.166 + 0.151 X 0.300) = 2763m

To determine the distance upstream of the weir where the depth is 2.5 m, we perform the
following calculations in a manner analogous to those at the downstream location:

u= . 1.31 and »=13P"* =143

1.91

F(1.3,333) =0.578 and F(1.43,2.5) = 0474
x =1910(1.31 — 0.578 + 0.151 X 0.474) = 1536 m

Hence, the distance between the two locations, from a depth of 3 m to where the depth is
2.5m,is2763 — 1536 = 1227 m, or approximately 1230 m.
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Table 10.4 Formulas for Rectangular and General Sections

10.8 Summary

Section Fr V. E M
1/3 2 2
Rectangular Ls q_2 y+ q_z bL + .qi
Jor g 2gy 2 g
/A ’B Q? o
General Q QB _ 1 AT + =
gAlB gA® ’ 2gA4* 4 gA
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